Изобретение относится к неорганической химии, а именно к способам получения диоксида циркония высокой чистоты, которые находят широкое применение в современной технике.
Материалы на основе диоксида циркония интенсивно изучаются благодаря его особенным химическим (температура плавления выше 2700°C), физическим, оптическим, диэлектрическим и механическим свойствам. Этот материал демонстрирует высокую термическую и механическую устойчивость, химическую инертность. Все вышеперечисленные свойства позволяют использовать его в различных практических приложениях: для производства стекла и керамических материалов, топливных ячеек, каталитических систем, кислородных сенсоров, а также в различных областях микроэлектроники. Полученные на его основе фианиты близки по своим оптическим свойствам к алмазу. В последнее время диоксид циркония широко применяется в зубопротезировании и в косметике.
Диоксид циркония, который применяется в современной технике, должен обладать высокой чистотой (не менее 99,99%) и дисперстностью (менее 0.1 мкм).
Чистый оксид циркония (ZrO2) находится в трех модификациях. Кубическая фаза высокой температуры превращается ниже 2300°C в метастабильный тетрагональный оксид циркония, и между 1200°C и 950°C наблюдают переход тетрагонального в моноклинный ZrO2.
Трансформации между моноклинными фазами и фазами высокой температуры при нагревании и охлаждении связывают с неравномерными изменениями объема.
Известен способ переработки циркониевого концентрата, который включает его фторирование бифторидом аммония при температуре 50-190°C в течение 3-72 ч, переработку обескремненного продукта путем возгонки нагреванием без доступа воздуха либо в инертной атмосфере при 900-1100°C в течение 4-5 ч с выделением путем конденсации при 250-850°C тетрафторида циркония и получение из него пирогидролизом при 900-920°C в течение 0,5-1 ч диоксида циркония (см. RU №2048559).
Известен способ получения диоксида циркония (см. DE №4445205), в котором указано, что галогенид циркония нагревается и его пары или смесь его паров с инертным газом смешиваются с воздухом, О2, Н2, N2 в газовой горелке и газы вместе подаются в пламя закрытой камеры сгорания для прохождения реакции. Затем отходящий газ и ZrO2 охлаждаются в теплообменнике; отходящий газ отделяется от ZrO2 и при данных условиях (в данном случае) осевший на ZrO2 галогенидный остаток удаляется термической обработкой с влажным воздухом.
Недостаток способа - сложность в связи с многостадийностью.
Известен также способ получения диоксида циркония, включающий пирогидролиз в газовой фазе фторсодержащих солей циркония в присутствии водяного пара (см. RU №2386713).
Недостатком этого способа является сложность нагрева паров воды до высоких температур (с использованием задействованных при его реализации электрических нагревателей). В результате получают диоксид циркония с размерами частиц порядка 1 микрона.
Задача изобретения состоит в разработке способа получения нанодисперстных диоксидов циркония.
Технический результат, проявляющийся при решении поставленной задачи, выражается в получении высокочистого порошка диоксида циркония, при этом размер частиц порошка не превышает 0,1 микрона.
Для решения поставленной задачи способ получения диоксида циркония, включающий пирогидролиз в газовой фазе фторсодержащих солей циркония в присутствии водяного пара, отличается тем, что используют тетрафторид циркония, при этом пирогидролиз осуществляют прогревом реактора до 900-950°C, при температуре водяного пара от 700 до 1200°C, предпочтительно 900-1000°C, причем пары воды получают за счет сжигания в горелке водорода в кислороде, а в их объем дозировано вводят дополнительное количество паров воды, полученных ее испарением при температуре кипения. Кроме того, выделяющийся фтористый водород отбирают из реактора и повторно используют при получении тетрафторида циркония.
Сопоставительный анализ признаков заявленного решения с признаками прототипа и аналогов свидетельствует о соответствии заявленного решения критерию "новизна".
Признаки отличительной части формулы изобретения обеспечивают решение следующих функциональных задач.
Признаки, указывающие, что «используют тетрафторид циркония» в вышеназванных условиях и температурных режимах обеспечивают получение нанодисперстного диоксида циркония, который осаждается в тетрагональной сингонии.
Признаки, указывающие, что «пирогидролиз осуществляют прогревом реактора до 900-950°C, при температуре водяного пара от 700 до 1200°C, предпочтительно 900-1000°C» в объеме паров воды, обеспечивают возможность получения нанодисперстного диоксида циркония, который осаждается в тетрагональной сингонии, переходящей в моноклинную фазу при охлаждении.
Признаки, указывающие, что «пары воды получают за счет сжигания в горелке водорода в кислороде», обеспечивают ввод в реактор химически чистой воды и ее высокотемпературный прогрев.
Признаки, указывающие, что в объем паров воды, созданной сжиганием водорода в кислороде, «дозированно вводят дополнительное количество паров воды, полученных ее испарением при температуре кипения», обеспечивают возможность регулирования температуры паров воды, поступающих в реактор (регулированием соотношения объемов воды, полученной названными методами).
Признаки второго пункта формулы изобретения обеспечивают многократность использования тетрафторида циркония.
На чертеже показана схема циклонно-вихревой установки, обеспечивающей реализацию способа.
На чертеже показаны узлы установки 1 - емкость исходных компонентов (источник фторидов циркония), 2 - печь для нагрева исходных фторидов, 3 - подводящая труба для подачи газообразных фторидов в реактор 4, 5 - двухрукавная труба (для подачи водяного пара в реактор 4), 6 - печь подогрева реактора, 7 - печь для нагрева емкости 8 для хранения оксидов, 9 - газоотводящая труба (для отвода газообразых продуктов пирогидролиза).
Способ осуществляют следующим образом.
Готовят навеску тетрафторида циркония ZrF4 и помещают в аппарат пирогидролиза (емкость исходных компонентов 1). Емкость 1 нагревают с помощью печи 2 до температуры возгона тетрафторида циркония ZrF4. Через подводящую трубу 3 пары фторидов поступают в реактор 4, сюда же через двухрукавную трубу 5 подают пары воды, нагретые до 700-1200°C.
Объем паров воды, получаемой сжиганием водорода с кислородом в газовой горелке (на чертеже не показана), обозначен на схеме как ввод газовых компонентов (Н2 и O2). Объем воды, обозначенный на схеме как H2O - это пары воды, полученные ее испарением.
Температуру паров, поступающих в реактор 4, регулируют известным образом, либо регулируя скорость горения водорода и/или регулируя соотношение объемов синтезируемой и испаряемой воды.
Реактор нагревается до температуры 900-950°C. В процессе пирогидролиза при взаимодействии паров тетрафторида циркония ZrF4 и паров воды выделяется фтористый водород, который с остатками непрореагировавшей воды и небольшого количества пыли (ZrO2) через газоотводящую трубу 9 уходит в аппараты улавливания и регенерации (на чертеже не показаны). Фтористый водород известным образом повторно используется в процессе получения тетрафторида циркония.
Полученный диоксид циркония самотеком поступает в емкость 8, предназначенную для его хранения. Емкость 8 в процессе синтеза подогревается до 120°C для исключения конденсации паров воды в ней.
Конкретный пример выполнения способа.
Пример 1. Навеску тетрафторида циркония массой 100 грамм помещают в аппарат пирогидролиза (емкость исходных компонентов 1), где нагревают с помощью печи 2 до температур 900-950°C. При этих температурах начинается интенсивное испарение ZrF4.
Через подводящую трубу 3 пары поступают в реактор 4, сюда же через двухрукавную трубу 5 подаются пары воды, нагретые до 900-1000°C.
Объем паров воды включает объем паров воды - Н2О (а), получаемый сжиганием водорода в кислороде, и объем паров воды - H2O (б), получаемый ее испарением.
Температура паров воды, поступающих в реактор, регулируется скоростью горения водорода и/или соотношением H2O (а):H2O (b). Реактор нагревается до температуры 900-950°C. В процессе пирогидролиза выделяется фтористый водород, который с остатками непрореагировшей воды и небольшого количества пыли (TiO2) через трубу 9 поступает в аппараты улавливания и регенерации фторида аммония для повторного использования в процессе получения тетрафторида циркония. Полученные оксиды поступают в емкость 8 для их хранения, которая в процессе синтеза нагревается до 120°C для исключения конденсации паров воды в этой емкости.
В результате анализа полученного продукта показано, что получен порошок диоксида циркония. Диаметр частиц порошка не превышает 0,1 микрона (100 нанометров).
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ ДИОКСИДА ТИТАНА | 2013 |
|
RU2539582C1 |
СПОСОБ ПЕРЕРАБОТКИ ЦИРКОНИЕВОГО КОНЦЕНТРАТА | 1993 |
|
RU2048559C1 |
СПОСОБ ОБРАБОТКИ ДИССОЦИИРОВАННОГО ЦИРКОНА | 1995 |
|
RU2125019C1 |
СПОСОБ ПЕРЕРАБОТКИ ЦИРКОНИЙСОДЕРЖАЩЕГО СЫРЬЯ | 2008 |
|
RU2386713C1 |
СПОСОБ КОНВЕРСИИ ТЕТРАФТОРИДА УРАНА | 1992 |
|
RU2027674C1 |
СПОСОБ КОМПЛЕКСНОЙ УТИЛИЗАЦИИ ДИОКСИДА ЦИРКОНИЯ И ТЕТРАФТОРИДА КРЕМНИЯ | 2002 |
|
RU2225361C1 |
СПОСОБ ПЕРЕРАБОТКИ ЦИРКОНОВОГО КОНЦЕНТРАТА | 2021 |
|
RU2769684C1 |
ПЕРЕРАБОТКА ХИМИЧЕСКОГО СЫРЬЯ | 2012 |
|
RU2609882C2 |
Способ переработки цирконового концентрата | 1990 |
|
SU1754659A1 |
Способ переработки титансодержащего минерального сырья | 2019 |
|
RU2717418C1 |
Изобретение относится к способу получения диоксида циркония. Способ включает пирогидролиз в газовой фазе фторсодержащих солей циркония в присутствии водяного пара. В качестве соли циркония используют тетрафторид циркония. Пирогидролиз осуществляют прогревом реактора до 900-950°C, при температуре водяного пара от 700 до 1200°C, предпочтительно 900-1000°C. Пары воды получают за счет сжигания в горелке водорода в кислороде, а в их объем дозированно вводят дополнительное количество паров воды, полученных ее испарением при температуре кипения. Изобретение позволяет получить высокочистый порошок диоксида циркония, при этом размер частиц порошка не превышает 0,1 микрона. 1 з.п. ф-лы, 1 ил., 1 пр.
1. Способ получения диоксида циркония, включающий пирогидролиз в газовой фазе фторсодержащих солей циркония в присутствии водяного пара, отличающийся тем, что используют тетрафторид циркония, при этом пирогидролиз осуществляют прогревом реактора до 900-950°C, при температуре водяного пара от 700 до 1200°C, предпочтительно 900-1000°C, причем пары воды получают за счет сжигания в горелке водорода в кислороде, а в их объем дозировано вводят дополнительное количество паров воды, полученных ее испарением при температуре кипения.
2. Способ по п.1, отличающийся тем, что выделяющийся фтористый водород отбирают из реактора и повторно используют при получении тетрафторида циркония.
СПОСОБ ПЕРЕРАБОТКИ ЦИРКОНИЙСОДЕРЖАЩЕГО СЫРЬЯ | 2008 |
|
RU2386713C1 |
СПОСОБ ПЕРЕРАБОТКИ ЦИРКОНИЕВОГО КОНЦЕНТРАТА | 1993 |
|
RU2048559C1 |
DE 0004445205 А1, 20.06.1996 | |||
EA 200800176 А1, 28.04.2008 |
Авторы
Даты
2015-01-20—Публикация
2013-12-23—Подача