ГАЗОГЕНЕРИРУЮЩИЙ СОКРИСТАЛЛИЗАТ НА ОСНОВЕ НИТРАТА АММОНИЯ Российский патент 2015 года по МПК C06D5/06 

Описание патента на изобретение RU2539959C1

Изобретение относится к области газогенерирующей техники, а именно к высокоэнергетическим газогенерирующим композитам, и может быть использовано в различных системах пожаротушения на основе газогенераторов, системах интенсификации добычи нефти, для получения селективных газов, в автономных системах подъема затонувших объектов, подушках безопасности автомобилей.

Известен ряд газогенерирующих композитов на основе нитрата аммония, которые характеризуются высокой газопроизводительностью, низкой чувствительностью к удару и трению, отсутствием токсичных соединений хлора в генерируемых газах.

Основным недостатком известного композита [1] является применение инертного горючего-связующего СКДМ-80 (синтетический каучук дивинильный, пластифицированный трансформаторным маслом), что приводит к неполному сгоранию образца и большим энергомассовым потерям на шлакообразование [2]. Кроме того, композиты такой компоновки характеризуются плохой воспламеняемостью и низкой скоростью горения при низких давлениях, что существенно ограничивает область их использования.

Известны газогенерирующие композиты на основе нитрата аммония [3, 4], представляющие собой эвтектическую смесь [3] и молекулярный комплекс [4]. Основным недостатком таких композитов является использование в качестве добавки соединений цинка (оксида цинка [3], металлорганических соединений цинка [4]), которые при получении и хранении композита вступают в твердофазные химические реакции с нитратом аммония даже при нормальных условиях, что существенно снижает уровень физико-химических и механических характеристик газогенерирующего композита [5] и надежность работы газогенератора в целом. Кроме того, как отмечается в литературе, нитрат аммония и соединения цинка вступают в химическую реакцию с образованием высокочувствительных аммиакатов и тетрааммиакатов металлов, что существенно повышает опасность применения газогенерирующих композитов такой компоновки и сужает область их применения [5, 6].

Основным недостатком известного композита [7] на основе нитрата аммония, бутадиеннитрильного каучука и бихромата аммония (калия) является большая масса шлаков, остающихся на месте сгорания состава, что снижает эффективность работы и требует увеличения массогабаритных параметров газогенерирующей системы, сужая тем самым область ее применения.

Известен смесевой газогенерирующий композит [8], основным недостатком которого является наличие в составе горючего связующего 2,4-динитро-2,4-диазапентана (ДНА). Как показано в литературе [9, 10], при хранении композита образуются сокристаллизаты и молекулярные комплексы ДНА с компонентами газогенерирующих композитов с существенным изменением физико-механических характеристик, параметров термического разложения и горения, что недопустимо с точки зрения обеспечения надежности газогенерирующих систем и ограничивает области использования составов с ДНА.

Таким образом, известные газогенерирующие композиты на основе нитрата аммония характеризуются большими энергомассовыми потерями на шлакообразование, плохой воспламеняемостью, низкой скоростью горения, низкой стабильностью физико-механических характеристик и параметров термического разложения и горения во времени, низкой стабильностью физико-химических свойств с сопутствующим образованием высокочувствительных и опасных соединений, что существенно ограничивает их функциональные возможности и области применения.

Наиболее близким к предлагаемому техническому решению является газогенерирующий композит [прототип, 11], представляющий собой сокристаллизат нитрата аммония с бензо-18-краун-эфиром в соотношении 1/1. Применение такой компоновки газогенерирующего сокристаллизата приводит к низкой скорости горения, высокому значению предельного давления устойчивого воспламенения и горения и большим временам задержки воспламенения. Обозначенные недостатки газогенерирующего сокристаллизата ставят задачу существенного повышения давления внутри камеры сгорания газогенератора, что небезопасно, учитывая «гражданскую» область применения газогенератора, и существенно усложняет конструкцию газогенератора из-за необходимости внесения конструктивных элементов для создания давления в камере сгорания до воспламенения основного газогенерирующего состава.

Предлагаемое техническое решение направлено на устранение недостатков прототипа и создание газогенерирующего сокристаллизата на основе нитрата аммония, способного при сохранении низкой чувствительности к удару и трению, высокой стабильности физико-химических свойств, отсутствии токсичных соединений хлора в генерируемых газах обеспечить высокую скорость горения, снижение значения предельного давления устойчивого воспламенения и горения и уменьшение времени задержки воспламенения.

Технический результат заключается в существенном повышении скорости горения, снижении предельного давления устойчивого воспламенения и горения и уменьшения времени задержки воспламенения газогенерирующего сокристаллизата за счет использования энергоемкого полимера метилполивинилтетразола и гамма-модификации оксида алюминия (см. таблицу).

Состав предлагаемого композита содержит, по отношению к прототипу, в качестве энергоемкого горючего полимер метилполивинилтетразол и, дополнительно, добавку гамма-модификации оксида алюминия, в следующем соотношении, масс.%:

Нитрат аммония: 20-80

Гамма-модификация оксида алюминия: 1-4

Метилполивинилтетразол: остальное до 100 масс.%.

Основным существенным отличием предлагаемого газогенерирующего сокристаллизата является наличие в нем добавки и использование в качестве энергоемкого горючего метилполивинилтетразола.

Существенное повышение скорости горения газогенерирующего сокристаллизата обеспечивается каталитическим действием гамма-модификации оксида алюминия на термическое разложение и горение нитрата аммония и взаимодействием продуктов термического разложения нитрата аммония и метилполивинилтетразола.

Уменьшение времени задержки воспламенения и предельного давления устойчивого воспламенения и горения обеспечивается каталитическим действием добавки - гамма-модификации оксида алюминия и экзотермическим тепловым эффектом при разложении сокристаллизата нитрат аммония/метилполивинилтетразол.

Использование в предлагаемом газогенерирующем сокристаллизате нитрата аммония обеспечивает низкую чувствительность к удару и трению и отсутствие токсичных соединений хлора в генерируемых газах. Введение в состав метилполивинилтетразола связано с его благоприятным элементным составом, низкой чувствительностью к удару и трению, большой газопроизводительностью, особенностями термического поведения его сокристаллизатов с нитратом аммония, а именно экзотермический характер разложения, что обеспечивает дополнительный подвод тепла в зону химических реакций и интенсифицирует их. Использование гамма-модификация оксида алюминия позволяет снизить температуру начала интенсивного разложения нитрата аммония за счет интенсификации химических реакций в конденсированной фазе и существенно повысить скорость горения композитов на его основе с сопутствующим снижением зависимости скорости горения от давления. Соотношение компонентов выбрано из расчета обеспечения высокой скорости горения, низкого предельного давления устойчивого воспламенения и горения, уменьшения времени задержки воспламенения, снижения чувствительности к удару и трению, высокой стабильности свойств газогенерирующего сокристаллизата. При этом наиболее оптимальным соотношением нитрат аммония/гамма-модификация оксида алюминия является соотношение 20/1.

Представленные в таблице данные по чувствительности к удару (нижний предел инициирования - H0, частотность взрывов - f) и трению (давление инициирования - P0) получены в соответствии с ГОСТ Р 50835-95 и ГОСТ 4545-88. Скорость горения (u) измерена в приборе постоянного давления.

Таблица 1 Характеристики прототипа и заявляемого композита Характеристика Прототип [11] Заявляемый сокристаллизат CCl, % 0 0 H0, мм >500 >500 f, % 10 7-10 P0, кгс/см2 5300 5200-5400 V, см3 0,05 0,04-0,06 Δu, % 4 3-5 u при p=7 МПа, мм/с 0,58 7-11 pпр, МПа 2 0,1 t3 при p=2 МПа, с 0,7 0,1-0,2

Минимальное значение предельного давления устойчивого воспламенения и горения (pпр) и время задержки воспламенения (tз) измерены с применением прибора постоянного давления при воспламенении образцов газогенерирующих сокристаллизатов навеской дымного ружейного пороха массой 0,3 г. Представленные результаты по содержанию токсичных соединений хлора (CCl) в продуктах сгорания получены термодинамическим расчетом. Стабильность характеристик физико-химических свойств оценена по уровню газовыделения (V) при помощи ампульно-хроматографического анализа (время выдержки образцов 24 часа при температуре 80°C) и по изменению скорости горения (Δu) при хранении образцов сокристаллизатов в течение одного года при нормальных условиях.

Впервые примененная в газогенерирующих композитах на основе нитрата аммония гамма-модификация оксида алюминия позволяет интенсифицировать химические реакции в конденсированной фазе, что приводит к улучшению параметров горения и воспламенения нитратных газогенерирующих композитов. Введение гамма-модификации оксида алюминия в количестве 1-4 масс.% обусловлено наиболее оптимальными параметрами горения газогенерирующего сокристаллизата именно при этом содержании катализатора. Уменьшение содержания гамма-модификации оксида алюминия приводит к снижению скорости горения и плохой воспламеняемости сокристаллизата, увеличение содержания добавки приводит к ухудшению энергомассовых параметров горения сокристаллизата (увеличивается масса шлаков, снижается газопроизводительность).

В соответствии с вышесказанным газогенерирующий сокристаллизат, содержащий нитрат аммония, метилполивинилтетразол и гамма-модификацию оксида алюминия, может быть использован в различных газогенераторах прикладного назначения, в которых требуется отсутствие токсичных соединений хлора, низкая чувствительность к удару и трению, высокая стабильность физико-химических характеристик, малое время задержки воспламенения, высокая скорость горения и низкое значение предельного давления устойчивого воспламенения и горения.

Совокупность вышеназванных компонентов в составе позволила решить техническую задачу существенного повышения скорости горения, снижения времени задержки воспламенения и предельного давления устойчивого воспламенения и горения за счет применения энергоемкого полимера метилполивинилтетразола и добавки гамма-модификации оксида алюминия.

Применяемые компоненты производятся на промышленных установках и имеют приемлемые технологические свойства. Изготовление газогенерирующего сокристаллизата производится в следующем порядке:

- растворение необходимого количества нитрата аммония и метилполивинилтетразола в водно-ацетоновом растворе (соотношение вода/ацетон = 20/80) при температуре 60°C в магнитной мешалке в течение не менее 60 минут;

- после получения раствора, не имеющего оптически заметных включений, проводится отгон растворителя в условиях термовакуумного шкафа с реализацией перемешивания смеси растворов в течение не менее 5 часов при температуре 60°C и давлении не более 0,03 МПа;

- полученный сокристаллизат нитрат аммония/метилполивинилтетразол размалывается в условиях шаровой мельницы до достижения размеров частиц порошка не более 100-500 мкм;

- в порошок сокристаллизата нитрат аммония/метилполивинилтетразол вводится необходимое количество гамма-модификации оксида алюминия, и полученная масса перемешивается в смесителе объемно-гравитационного типа в течение не менее 60 минут;

- полученная масса вакуумируется в условиях термовакуумного шкафа в течение 60 минут при температуре 60°C для удаления остаточного растворителя и формуется во фторопластовые сборки.

Для проверки эффективности предложенного сокристаллизата и заявленных характеристик были проведены экспериментальные исследования на базе Федерального научно-производственного центра «Алтай», подтвердившие высокую эффективность предложенного сокристаллизата по сравнению с аналогами и прототипом.

Список литературы

1. Патент РФ №2389714 от 31.03.2009 г.

2. Kubota N. Propellants and Explosives: Thermochemical Aspects of Combustion. - New York: Wiley-VCH Verlag, 2002. - 310 p.

3. Патент European Patent № EP 0922016 от 24.02.2010 г.

4. Патент США №8197619 от 12.06.2012 г.

5. Popok V.N., Vdovina N.P., Bychin N.V. Compatibility of nanodispersed powders of metals and their oxides with components of mixed energy materials // Nanotechnologies in Russia. - 2013. - V.8. - №1-2. - P.99-107.

6. Audrieth L. F., Schmidt M.T. Fused "Onium" Salts as Acids. I. Reactions in Fused Ammonium Nitrate // Procedings of the National Academy of Sciences. - 1934. - №4. - P.221-225.

7. Патент РФ №2444554 от 02.07.2010 г.

8. Патент РФ №2481319 от 02.12.2011 г.

9. Landenberger K.B., Matzger A.J. Cocrystals of 1,3,5,7-Tetranitro-1,3,5,7-tetrazacyclooctane (HMX) // Cryst. Growth Des. - 2012. - №12(7). - P.3603-3609.

10. Попок B.H., Бычин H.B., Попок Н.И., Шеин Н.В. Механическая активация сокристаллизации некоторых нитросоединений // Бутлеровские сообщения. - 2013. Т.34. - №5. - С.106-123.

11. Патент США №2013/0102797 от 25.04.2013 г.

Похожие патенты RU2539959C1

название год авторы номер документа
ТВЕРДОТОПЛИВНЫЙ ГАЗОГЕНЕРИРУЮЩИЙ СОСТАВ НА ОСНОВЕ НИТРАТА АММОНИЯ 2009
  • Попок Владимир Николаевич
  • Хмелев Владимир Николаевич
  • Лукина Наталия Викторовна
RU2423339C1
ТВЕРДОТОПЛИВНЫЙ НИЗКОТЕМПЕРАТУРНЫЙ ГАЗОГЕНЕРИРУЮЩИЙ СОСТАВ 2009
  • Попок Владимир Николаевич
  • Хмелев Владимир Николаевич
  • Вандель Александр Павлович
RU2393140C1
ТВЕРДОТОПЛИВНАЯ МЕТАЛЛИЗИРОВАННАЯ КОМПОЗИЦИЯ НА ОСНОВЕ НИТРАТА АММОНИЯ 2014
  • Попок Владимир Николаевич
  • Хмелев Владимир Николаевич
RU2580735C2
ТВЕРДОТОПЛИВНЫЙ ГАЗОГЕНЕРИРУЮЩИЙ СОСТАВ 2011
  • Попок Владимир Николаевич
  • Кормачева Валентина Сергеева
RU2481319C1
ГАЗОГЕНЕРИРУЮЩИЙ СОСТАВ НА ОСНОВЕ НИТРАТА АММОНИЯ 2010
  • Попок Владимир Николаевич
  • Хмелев Владимир Николаевич
RU2444505C1
ТВЕРДОТОПЛИВНАЯ МЕТАЛЛИЗИРОВАННАЯ КОМПОЗИЦИЯ 2013
  • Попок Владимир Николаевич
  • Жарков Александр Сергеевич
  • Вандель Александр Павлович
  • Попок Николай Иванович
RU2541332C1
ТВЕРДОТОПЛИВНАЯ КОМПОЗИЦИЯ НА ОСНОВЕ НИТРАТА АММОНИЯ 2013
  • Попок Владимир Николаевич
  • Жарков Александр Сергеевич
  • Попок Николай Иванович
RU2543019C1
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОЭНЕРГЕТИЧЕСКОГО КОМПОЗИТА 2013
  • Попок Владимир Николаевич
  • Жарков Александр Сергеевич
  • Попок Николай Иванович
RU2541265C1
ТВЕРДОТОПЛИВНЫЙ ГАЗОГЕНЕРИРУЮЩИЙ СОСТАВ 2020
  • Ковешников Павел Владимирович
  • Козловский Константин Львович
RU2739778C1
ГОРЮЧЕЕ-СВЯЗУЮЩЕЕ 2011
  • Попок Владимир Николаевич
  • Завражин Константин Владимирович
RU2465258C1

Реферат патента 2015 года ГАЗОГЕНЕРИРУЮЩИЙ СОКРИСТАЛЛИЗАТ НА ОСНОВЕ НИТРАТА АММОНИЯ

Изобретение относится к газогенерирующей технике. Газогенерирующий сокристаллизат на основе нитрата аммония включает окислитель - нитрат аммония, энергоемкое горючее, причем в качестве энергоемкого горючего используется метилполивинилтетразол, в качестве добавки - гамма-модификация оксида алюминия. Все компоненты взяты при определенном соотношении. Изобретение позволяет уменьшить время задержки воспламенения, существенно повысить скорость горения и уменьшить предельное давление устойчивого воспламенения и горения газогенерирующего сокристаллизата. 1 табл.

Формула изобретения RU 2 539 959 C1

Газогенерирующий сокристаллизат на основе нитрата аммония, включающий окислитель - нитрат аммония, энергоемкое горючее, отличающийся тем, что в качестве энергоемкого горючего используется метилполивинилтетразол, в качестве добавки - гамма-модификация оксида алюминия, при следующем содержании компонентов, масс. %:
Нитрат аммония: 20-80
Гамма-модификация оксида алюминия: 1-4
Метилполивинилтетразол: остальное до 100 масс. %.

Документы, цитированные в отчете о поиске Патент 2015 года RU2539959C1

US 20130102797 A1, 25.04.2013
ГАЗОГЕНЕРИРУЮЩИЙ СОСТАВ НА ОСНОВЕ НИТРАТА АММОНИЯ 2010
  • Попок Владимир Николаевич
  • Хмелев Владимир Николаевич
RU2444505C1
ТВЕРДОТОПЛИВНЫЙ ГАЗОГЕНЕРИРУЮЩИЙ СОСТАВ НА ОСНОВЕ НИТРАТА АММОНИЯ 2009
  • Попок Владимир Николаевич
  • Хмелев Владимир Николаевич
  • Лукина Наталия Викторовна
RU2423339C1
Устройство для контроля режима работы конусной инерционной дробилки 1980
  • Иванов Николай Алексеевич
  • Зарогатский Леонид Петрович
  • Иванов Борис Гаврилович
  • Митрофанов Евгений Сергеевич
  • Константинов Евгений Александрович
  • Черкасский Владимир Авраамович
SU1068165A1

RU 2 539 959 C1

Авторы

Попок Владимир Николаевич

Хмелев Владимир Николаевич

Даты

2015-01-27Публикация

2013-07-29Подача