ДАТЧИК ДЛЯ КОНТРОЛЯ ПРОЦЕССА ПРОПИТКИ НАПОЛНИТЕЛЯ ПОЛИМЕРНЫМ СВЯЗУЮЩИМ Российский патент 2015 года по МПК G01R27/00 

Описание патента на изобретение RU2540934C1

Изобретение относится к устройствам для контроля процесса пропитки наполнителя полимерным связующим, в частности преформ, преимущественно в процессе инфузии, и может найти применение при изготовлении изделий из полимерных композиционных материалов (ПКМ) как простой, так и сложной геометрической формы и различных размеров, в которых в качестве наполнителя могут быть использованы, например, преформы из стекло- или углеволокна.

Аналогом изобретения является пленочный полиимидный конденсатор с рабочей температурой не менее 200°C. Он представляет собой диэлектрическую полиимидную пленку, которая расположена между обкладками из металлических пленок, включающих слои Cr-Cu (Патент RU №2046429, H01G 4/06, опубл. 1995.10.20).

Недостатком этого конденсатора является то, что для его изготовления необходим определенный материал, правильно подобранный к системе наполнитель - связующее, что в ряде случаев затруднительно или невозможно.

Наиболее близким по технической сущности является датчик мониторинга характеристик среды, описанный в Патенте US 4710550, опубл. 01.12.1987 - прототип.

Датчик состоит из двух гребенчатых электродов, каждый из которых имеет штырьки или линии шириной менее 0,02 дюйма (~0,4 мм), находящиеся на расстоянии не более 0,01 дюйма друг от друга. Количество штырьков может изменяться в зависимости от используемой частоты, но, как правило, должно быть, по меньшей мере, 33 штырька на 1 дюйм. Каждый электрод может иметь два контакта для подключения к соответствующему измерительному мосту или анализатору в случае четырехполосного измерения. Электроды могут быть изготовлены из меди или, предпочтительно, из более химически стойких проводящих материалов, как, например, золото, платина, хром, титан, вольфрам, палладий или сплавы из таковых. Электроды прикрепляют к непроводящей подложке известным способом, например вакуумным напылением и/или подходящим связующим, и протравливают со сплошного слоя также известным способом.

Работа датчика основана на измерении полного сопротивления, которое можно выполнить с помощью диэлектрического моста или электроизмерительного устройства, где датчик располагают таким образом, чтобы он находился в контакте с полимерным материалом, предназначенным для измерений, имеющим определенное электрическое сопротивление, отличное от сопротивления подложки датчика.

Недостатками известного датчика, принятого за прототип, является то, что он предназначен для мониторинга и/или контроля химических реакций, в особенности реакций полимеризации, и его конструкция не может обеспечить контроль процесса пропитки наполнителя полимерным связующим при изготовлении изделий из ПКМ как простой, так и сложной формы, в качестве наполнителя в которых используются, например, преформы из стекловолокна или углеволокна.

Задача изобретения - обеспечение контроля пропитки наполнителя полимерным связующим при изготовлении изделий из ПКМ как простой, так и сложной геометрической формы и различных размеров, в качестве наполнителя в которых используются, например, преформы из стекловолокна или углеволокна.

Задача решается тем, что в датчике, содержащем непроводящую подложку, на которую нанесены параллельно расположенные токопроводящие ламели в виде линий и образующие гребенчатую форму, согласно предлагаемому изобретению, непроводящая подложка выполнена из плоского тонкого полимерного композиционного материала на основе стеклоткани, нанесенные на нее токопроводящие ламели выполнены из меди и образуют два гребня, количество токопроводящих ламелей составляет по меньшей мере 30 на 1 см, ширина каждой из токопроводящих ламелей составляет от 0,1 до 1,0 мм, расстояние между токопроводящими ламелями составляет от 0,1 до 0,5 мм, причем каждый из гребней токопроводящих ламелей соединен с соответствующим ему медным электропроводом в изоляции, сечение каждого из которых составляет 0,03-1,0 мм, а сверху непроводящей подложки расположена проницаемая для полимерного связующего мембрана из полиэфирной ткани Airtech Release Ply Super F с плотностью 114 г/м2, герметично соединенная с ней по контуру. Изоляция электропроводов может быть выполнена из фторопласта. Толщина датчика может составлять от 0,1 до 1,0 мм.

Наличие непроводящей подложки, выполненной из плоского тонкого гибкого полимерного композиционного материала на основе стеклоткани с нанесенными на нее ламелями, выполненными из меди, позволяет до проведения пропитки наполнителя (преформы) размещать датчик в участках наполнителя (преформы) сложной геометрической формы при изготовлении изделий как больших, так и малых размеров, прикреплять его к изогнутым поверхностям, а также размещать между слоями заготовки изделия в участках сложной геометрической формы и в зоне технического припуска изделия.

Размеры непроводящей подложки определяются формой и размерами контролируемого участка наполнителя (преформы) изделия и диэлектрическими свойствами полимерного связующего, используемого для его пропитки.

Количество токопроводящих ламелей, их ширина и расстояние между ними выбирается в зависимости от необходимой точности показаний датчика и диэлектрических свойств полимерного связующего, используемого для пропитки наполнителя.

Наличие проницаемой только для полимерного связующего мембраны, герметично соединенной с непроводящей подложкой, исключает попадание наполнителя на токопроводящие ламели и позволяет исключить влияние наполнителя, находящегося в полимерном связующем, на результаты измерений.

На фиг.1 изображен общий вид датчика.

На фиг.2 изображен разрез А-А фиг.1.

Датчик состоит из непроводящей подложки (1), выполненной из тонкого гибкого ПКМ на основе стеклоткани, которая пропитана термореактивным полимерным связующим. На непроводящую подложку (1) нанесены параллельно расположенные токопроводящие ламели (2) в виде линий, выполненные из меди и образующие два гребня. Каждый из двух гребней соединен с соответствующим ему медным электропроводом (3) во фторопластовой изоляции. Сверху непроводящей подложки (1) расположена проницаемая для полимерного связующего мембрана (4) из полиэфирной ткани Airtech Release Ply Super F с плотностью 114 г/м2, герметично соединенная с ней по контуру с помощью клея. Медные ламели нанесены на подложку любым известным методом, например напылением.

Работа датчика заключается в следующем: датчик вставляется в контролируемый участок до осуществления процесса пропитки наполнителя (преформы) полимерным связующим. Электропровода (3) датчика подсоединяются к микрокомпьютеру для измерения диэлектрических параметров. Затем проводится пропитка наполнителя (преформы) полимерным связующим, которое, попав на медные ламели (2) датчика, выступает в роли диэлектрика и меняет его исходные диэлектрические параметры: емкость (С), сопротивление (R) и тангенс угла диэлектрических потерь (tgδ).

Изменение исходных диэлектрических значений датчика снимается микрокомпьютером посредством изменений сигнала емкости (С), сопротивления (R) и тангенса угла диэлектрических потерь (tgδ) в момент прохождения полимерным связующим участков наполнителя (преформы), на которых эти датчики установлены. Аналоговый сигнал с датчика поступает на микрокомпьютер, запрограммированный так, чтобы отбрасывать случайные электрические сигналы и ненадежные данные, например, из кратковременных пакетных шумов.

Предлагаемый датчик позволяет обеспечить контроль пропитки наполнителя полимерным связующим при изготовлении изделий из ПКМ как простой, так и сложной геометрической формы и различных размеров, в качестве наполнителя в которых используются, например, преформы из стекловолокна или углеволокна.

Похожие патенты RU2540934C1

название год авторы номер документа
ДАТЧИК ДЛЯ КОНТРОЛЯ ДИЭЛЕКТРИЧЕСКИХ СВОЙСТВ ПОЛИМЕРНОГО МАТЕРИАЛА 2013
  • Морозов Сергей Валерьевич
  • Мазур Валерий Владимирович
  • Войлочников Александр Игоревич
  • Соколова Александра Владиславовна
  • Синенков Алексей Николаевич
RU2547349C1
СПОСОБ ИЗГОТОВЛЕНИЯ ИЗДЕЛИЙ ТРЁХСЛОЙНОЙ КОНСТРУКЦИИ ИНТЕГРАЛЬНОГО ТИПА ИЗ ПОЛИМЕРНЫХ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ 2016
  • Проценко Александр Евгеньевич
  • Петров Виктор Викторович
  • Лысов Андрей Николаевич
  • Ри Дмитрий Хосенович
RU2669499C1
Способ изготовления тензорезистивного датчика, выполненного в виде тканого полотна из проводящих углеродных волокон и диэлектрических волокон 2021
  • Симунин Михаил Максимович
  • Воронина Светлана Юрьевна
  • Семенуха Оксана Викторовна
  • Шалыгина Таисия Александровна
  • Чирков Дмитрий Юрьевич
RU2800738C2
Композиционные материалы на основе полифениленсульфида, углеродных волокон и способ их получения 2021
  • Беев Ауес Ахмедович
  • Хаширова Светлана Юрьевна
  • Слонов Азамат Ладинович
  • Мусов Исмел Вячеславович
  • Беева Джульетта Анатольевна
RU2767549C1
Наполненные аппретированным углеволокном полимерные композиты из полифениленсульфида и способ их получения 2021
  • Беев Ауес Ахмедович
  • Хаширова Светлана Юрьевна
  • Слонов Азамат Ладинович
  • Мусов Исмел Вячеславович
  • Беева Джульетта Анатольевна
RU2767564C1
Полифениленсульфидные композиционные материалы с аппретированными углеродными волокнами и способ их получения 2021
  • Беев Ауес Ахмедович
  • Хаширова Светлана Юрьевна
  • Слонов Азамат Ладинович
  • Мусов Исмел Вячеславович
  • Беева Джульетта Анатольевна
RU2767562C1
Способ изготовления преформы на основе водорастворимой подложки для лопаток компрессора 2018
  • Орлов Максим Андреевич
  • Поликарпова Ирина Александровна
  • Калинников Александр Николаевич
  • Нелюб Владимир Александрович
  • Бородулин Алексей Сергеевич
  • Буянов Иван Андреевич
RU2719171C1
ДЛИННОМЕРНЫЙ СИЛОВОЙ КОНСТРУКЦИОННЫЙ ЭЛЕМЕНТ ТИПА СТРОИТЕЛЬНОЙ БАЛКИ ИЗ ПОЛИМЕРНОГО КОМПОЗИЦИОННОГО МАТЕРИАЛА 2013
  • Нелюб Владимир Александрович
  • Буянов Иван Андреевич
  • Бородулин Алексей Сергеевич
  • Чуднов Илья Владимирович
  • Полосмак Павел Вячеславович
RU2542294C2
ЭПОКСИДНАЯ КОМПОЗИЦИЯ ДЛЯ АДГЕЗИОННОГО СЛОЯ И АРМИРУЮЩИЙ НАПОЛНИТЕЛЬ НА ЕГО ОСНОВЕ 2019
  • Гребенева Татьяна Анатольевна
  • Панина Наталия Николаевна
  • Баторова Юлия Александровна
  • Кутергина Ирина Юрьевна
  • Голиков Егор Ильич
  • Лукина Анна Ираклиевна
  • Байков Игорь Николаевич
  • Ласкорунский Игорь Петрович
RU2720782C1
Полимерные композиционные материалы из полифениленсульфида с углеродными волокнами и способ их получения 2021
  • Беев Ауес Ахмедович
  • Хаширова Светлана Юрьевна
  • Слонов Азамат Ладинович
  • Мусов Исмел Вячеславович
  • Беева Джульетта Анатольевна
RU2775606C1

Иллюстрации к изобретению RU 2 540 934 C1

Реферат патента 2015 года ДАТЧИК ДЛЯ КОНТРОЛЯ ПРОЦЕССА ПРОПИТКИ НАПОЛНИТЕЛЯ ПОЛИМЕРНЫМ СВЯЗУЮЩИМ

Изобретение относится к устройствам для контроля процесса пропитки наполнителя полимерным связующим, в частности преформ, преимущественно в процессе инфузии, и может найти применение при изготовлении изделий из полимерных композиционных материалов как простой, так и сложной геометрической формы и различных размеров, в которых в качестве наполнителя могут быть использованы, например, преформы из стекло- или углеволокна. Датчик для контроля процесса пропитки наполнителя полимерным связующим, содержащий непроводящую подложку, на которую нанесены параллельно расположенные токопроводящие ламели, выполненные в виде параллельных линий и образующие гребенчатую форму. При этом непроводящая подложка выполнена из плоского тонкого полимерного композиционного материала на основе стеклоткани, нанесенные на нее токопроводящие ламели выполнены из меди и образуют два гребня, количество токопроводящих ламелей составляет по меньшей мере 30 на 1 см, ширина каждой из токопроводящих ламелей составляет от 0,1 до 0,2 мм, расстояние между токопроводящими ламелями составляет 0,1 мм. Причем каждый из гребней токопроводящих ламелей соединен с соответствующим ему медным электропроводом в изоляции, сечение каждого из которых составляет 0,03-1,0 мм, а сверху непроводящей подложки расположена проницаемая для полимерного связующего мембрана из полиэфирной ткани Airtech Release Ply Super F с плотностью 114 г/м2, герметично соединенная с ней по контуру. Изоляция электропроводов может быть выполнена из фторопласта. Толщина датчика может составлять 0,1-1,0 мм. Техническим результатом является обеспечение контроля пропитки наполнителя полимерным связующим при изготовлении изделий из ПКМ как простой, так и сложной геометрической формы и различных размеров, в качестве наполнителя в которых используются, например, преформы из стекловолокна или углеволокна. 2 з.п. ф-лы, 2 ил.

Формула изобретения RU 2 540 934 C1

1. Датчик для контроля процесса пропитки наполнителя полимерным связующим, содержащий непроводящую подложку, на которую нанесены параллельно расположенные токопроводящие ламели, выполненные в виде параллельных линий и образующие гребенчатую форму, отличающийся тем, что непроводящая подложка выполнена из плоского тонкого полимерного композиционного материала на основе стеклоткани, нанесенные на нее токопроводящие ламели выполнены из меди и образуют два гребня, количество токопроводящих ламелей составляет по меньшей мере 30 на 1 см, ширина каждой из токопроводящих ламелей составляет от 0,1 до 0,2 мм, расстояние между токопроводящими ламелями составляет 0,1 мм, причем каждый из гребней токопроводящих ламелей соединен с соответствующим ему медным электропроводом в изоляции, сечение каждого из которых составляет 0,03-1,0 мм, а сверху непроводящей подложки расположена проницаемая для полимерного связующего мембрана из полиэфирной ткани Airtech Release Ply Super F с плотностью 114 г/м2, герметично соединенная с ней по контуру.

2. Датчик по п.1, отличающийся тем, что изоляция электропроводов выполнена из фторопласта.

3. Датчик по п.1, отличающийся тем, что толщина датчика составляет 0,1-1,0 мм.

Документы, цитированные в отчете о поиске Патент 2015 года RU2540934C1

US 4710550 A 01.12.1987
ПЛЕНОЧНЫЙ КОНДЕНСАТОР 1993
  • Сумин П.П.
  • Погуляев В.В.
  • Головенко Ю.Н.
  • Блинов Г.А.
  • Крошкин Б.Б.
RU2046429C1
ТОНКОПЛЕНОЧНЫЙ КОНДЕНСАТОР НА ОСНОВЕ ПРОВОДЯЩИХ ПОЛИМЕРОВ 2002
  • Кумар Прабхат
  • Юленхат Хеннинг
RU2318263C2
US 2002032531 A1 14.03.2002

RU 2 540 934 C1

Авторы

Морозов Сергей Валерьевич

Мазур Валерий Владимирович

Портнова Яна Мечеславовна

Войлочников Александр Игоревич

Алексанян Роман Альбертович

Даты

2015-02-10Публикация

2013-10-15Подача