Изобретение относится к проводам контактной сети из дисперсионно-твердеющего сплава и технологии их получения и может быть, в частности, использовано для высокоскоростного железнодорожного транспорта.
Провода контактной сети железнодорожного транспорта, в том числе и высокоскоростного, в процессе эксплуатации постоянно натянуты с усилием, напряжение которого в 2-3 раза превышает напряжение натяжения проводов на других линиях. Эксплуатация происходит постоянно при температуре 100°C, допускается кратковременный подъем температуры до 150°C.
Эти особенности эксплуатации заставляют предъявлять к проводам контактной сети высокоскоростного железнодорожного транспорта два дополнительных требования:
- жаропрочность (пониженная скорость низкотемпературной ползучести),
- провода должны изготавливаться по непрерывной технологии (из-за высокого напряжения натяжения на проводах должны отсутствовать стыки).
Таким образом, к традиционным требованиям:
- повышенная удельная электропроводность (не менее 83% IACS);
- повышенная прочность (временное сопротивление при растяжении не менее 500 МПа при относительном удлинении не менее 4%)
добавляются требования:
- повышенной жаропрочности при температурах до 150°C (температура начала разупрочнения при часовой выдержке не менее 400°C);
- провода должны изготавливаться по непрерывной технологии.
Непрерывная технология изготовления проводов включает: непрерывное литье медных сплавов - горячую прокатку в катанку - холодное волочение.
Как известно, медные сплавы по способу упрочнения делятся на два типа:
- деформационно-твердеющие (упрочняющиеся за счет холодной деформации);
- дисперсионно-твердеющие (упрочняющиеся за счет холодной деформациии выделения из пересыщенного твердого раствора дисперсионных частиц).
Технология получения деформационно-твердеющего сплава раскрыта в патенте RU 2236918 (Берент В.Я.).
Способ производства контактных проводов в соответствии с данным патентом включает получение расплава в печи с инертной атмосферой, рабочее пространство которой состоит из трех зон - зоны плавления, зоны легирования и зоны выдачи готового металла, его легирование элементами, имеющими гексагональную или тетрагональную кристаллическую решетку, и вытяжку из расплава литой заготовки требуемого сечения. Последующее формирование из нее профиля провода осуществляют в два этапа - получение прутка волочением со степенью деформации 15-50% и последующей прокаткой прутка со степенью деформации 50-70%.
Однако практика показала, что деформационно-твердеющие сплавы не удовлетворяют предъявляемым требованиям. Так, лучшие из них, применяемые для контактных проводов, сплавы системы Cu-Mg имеют временное сопротивление при растяжении более 500 МПа при относительном удлинении не менее 4%, но их удельная электропроводность составляет менее 70% IACS, а сплавы системы Cu-Sn, имеющие удельную электропроводность более 80% IACS, имеют временное сопротивление при растяжении менее 450 МПа.
Лучшие дисперсионно-твердеющие электротехнические сплавы меди систем Cu-Cr-Zr, Cu-Cr, Cu-Zr-Ti, Cu-Cr-Ti и другие, имеющие временное сопротивление при растяжении более 500 МПа, удельную электропроводность более 80% IACS, не могут изготавливаться по непрерывной технологии. Это связано с тем, что легирующие элементы Cr, Zr,, Ti имеют высокое сродство к кислороду, поэтому интенсивно раскисляют расплав меди, зашлаковывая литейную систему до входа в кристаллизатор. Зашлаковка приводит к прекращению литья и к уходу легирующих элементов в шлак из сплава.
В связи с этим были попытки разработать электроконтактные провода на основе дисперсионно-твердеющих сплавов меди систем, содержащих переходные металлы и фосфор.
Наиболее близкий способ к предложенному раскрывается в патенте RU 2162764 (Берент В.Я.).
В соответствии с данным способом из сплава, содержащего в качестве переходного металла железо в количестве 0,1% и фосфор - 0,027%, при охлаждении расплава в кристаллизаторе со скоростью 25°C/с получали твердую заготовку с температурой 625°C на выходе из кристаллизатора. После подогрева заготовки до 860°C осуществляли прокатку катанки, имеющую температуру на выходе из последней клети 350°C. Катанка имела электросопротивление 0,0274 Ом·мм2/м. После старения при температуре 525°C в течение 1,5 часов и формирования провода со степенью деформации 60% полученный провод имел электросопротивление 0,022 Ом·мм2/м и прочность 42 кгс/мм2.
Известное изобретение, как это указано в патенте, обеспечивает достаточно высокую электропроводность контактных проводов одновременно с высокими механическими свойствами (износостойкостью и прочностью), позволяющими использовать провод в эксплуатации.
Однако при легировании железом не обеспечивается необходимая равномерность распределения легирующих по длине литой заготовки, а быстрое окисление железа практически приводит к невозможности попадания в стехиометрический состав, к тому же прочностные свойства меди, легированной фосфидами железа, в настоящее время не достаточны для использования их на высокоскоростных линиях, где требуются более высокие прочностные свойства.
Задачей изобретения является повышение прочностных свойств проводов при обеспечении попадания в стехиометрический состав фосфидов переходных металлов. Технический результат достигается применением для легирования фосфора, Ni или Co, образующих квазибинарные разрезы на диаграммах состояния с медью, лучше, чем железо, растворяющимися в меди и имеющими меньшее сродство к кислороду.
Поставленная задача решается способом получения электроконтактных проводов из сплавов на основе меди, включающем введение в расплав меди переходного металла и фосфора для получения сплава на основе меди, содержащего фосфид переходного металла стехиометрического состава, подачу сплава в кристаллизатор, кристаллизацию сплава в виде непрерывнолитой заготовки, прокатку упомянутой заготовки на катанку в условиях, обеспечивающих закалку сплава, старение и последующее формирование электроконтактного провода, в соответствии с которым получают сплав меди, содержащий 0,1-0,3 масс.% фосфида переходного металла, выбранного из группы, включающей фосфид никеля и фосфид кобальта, прокатку упомянутой заготовки осуществляют непосредственно за кристаллизацией, а старение осуществляют при 400-500°C.
В частных воплощениях изобретения поставленная задача решается тем, что введение переходного металла осуществляют путем введения лигатуры, изготовленной из спеченной смеси порошков меди и переходного металла при атомном соотношении Cu/Me=3/1.
Введение фосфора желательно осуществлять путем введения лигатуры фосфористой меди.
В частных воплощениях изобретения прокатку начинают при температуре не менее 800°C и заканчивают при температуре не более 100°C.
При этом желательно кристаллизацию сплава закончить при температуре от 1000°C до 900°C, а прокатку начать при температуре от 800°C до 900°C.
Желательно в этом случае провести прокатку в течение не более 80 с.
Поставленная задача решается электроконтактным проводом из сплава на основе меди, содержащий фосфид переходного металла стехиометрического состава, который выполнен в соответствии с вышеизложенным способом, а в качестве фосфида переходного металла содержит фосфид, выбранный из группы, включающей фосфид никеля и фосфид кобальта при следующем соотношении компонентов, масс.%:
Сущность предложенного изобретения состоит в следующем.
В настоящем изобретении предлагается технология получения проводов из дисперсионно-твердеющих сплавов на основе меди, систем Cu-Co-P и Cu-Ni-P, у которых тройные диаграммы состояния систем имеют следующие квазибинарные разрезы: Cu-Co2P, Cu-Ni2P.
Количественные соотношения сплавов выбираются в следующем соотношении, масс.%: Cu - (0,1-0,3)% Co2P; Cu - (0,1-0,3)% Ni2P.
Переходные металлы Co и Ni образуют с фосфором ряд соединений-фосфидов, состав которых колеблется от Me3P до MeP4, где Me - переходный металл.
Для реализации изобретения необходимо, чтобы сплавы содержали только соединения состава Me2P, отвечающие стехиометрическому составу.
Такие соединения образуются при легировании меди фосфором и одним из переходных металлов Co или Ni в атомном соотношении Me/P=2/1.
Данные соединения имеют отличные от отдельных элементов воздействие на медь: легирование расплава меди только Co или Ni приводит к увеличению прочности, но значительно снижает удельную электропроводность и снижает жидкотекучесть так, что литье практически прекращается. Легирование фосфором расплава меди приводит к раскислению меди, значительному повышению жидкотекучести меди, но значительно увеличивает горячеломкость меди, что приводит к невозможности литья.
А квазибинарные сплавы меди с фосфидами кобальта или никеля имеют сравнительно невысокий интервал кристаллизации, что приводит к пониженной горячеломкости. Сплавы меди с этими фосфидами имеют достаточно высокую жидкотекучесть. Эти характеристики позволяют проводить нормальное непрерывное литье этих расплавов.
Достоинство этих дисперсионно-твердеющих сплавов состоит в том, что их не нужно специально нагревать для закалки до температуры 800-900°C.
Закалка этих сплавов происходит при быстром охлаждении в прокатном стане горячей прокатки.
В способе в соответствии с изобретением литая заготовка сплава выходит из кристаллизатора при температуре около 1000°C, а входит в первую клеть прокатного стана при температуре более 800°C, желательно при 850-900°C. Катанка выходит из последней клети при температуре 100°C и менее.
Снижение температуры с 1000°C до приблизительно 100°C происходит в течение не более 80 с, желательно в течение 30-50 с. За это время в сплаве фиксируется пересыщенный твердый раствор. Далее бунт катанки нужно нагреть до температуры 400-500°C и выдержать в течение 2 часов для проведения старения (распада твердого раствора).
Легирование расплава меди осуществляется лигатурой в форме ленты, изготовленной из спеченной смеси порошков меди и одного из переходных материалов в соотношении Cu/Me=3/1. Это позволяет быстрее и точнее легировать расплав по сравнению с литой лигатурой.
В результате получаются провода контактной сети из дисперсионно-твердеющих сплавов меди с фосфидами никеля или кобальта в атомарном соотношении Me/P=2/1.
Пример осуществления изобретения.
В расплав меди в зоне легирования (обычно в миксере) установки непрерывного литья при температуре не ниже 1150°C вводили никельсодержащую лигатуру в форме ленты, изготовленной из спеченной смеси порошков меди и никеля в соотношении Cu/Ni=3/1, и фосфористую медь (лигатуру) по ГОСТ 4515-93. Причем скорость ввода легирующих элементов должна рассчитываться, исходя из скорости литья (скорости выхода литой заготовки в кг/с).
Количество легирующих компонентов подбирали из расчета получения состава, содержащего 0,1-0,3 масс.% Ni2P и медь - остальное.
Затем расплав подавали в кристаллизатор и осуществляли вытягивание заготовки. Площадь сечения заготовки составляла от 1000 до 3000 мм2. На выходе из кристаллизатора температура заготовки была около 1000°C.
Непосредственно после кристаллизации заготовка из сплава поступала на прокатку. Температура начала прокатки была более 800°C. Заготовка протягивалась за 7 проходов. На выходе из последней клети температура заготовки составляла 80-100°C.
В процессе прокатки использовалась спиртовая эмульсия для восстановления меди из оксидов на поверхности, которая также выполняла роль охлаждающей среды.
Время прохождения прокатки составило 40-80 с.
Затем катанку подогревали до 450°C для проведения старения и выдерживали при этой температуре в течение 2 часа.
После старения волочением формировали электроконтактный провод.
В таблице 1 приведены свойства получаемых проводов в зависимости от параметров технологии получения проводов в соответствии с данным примером и другими примерами реализации изобретения.
В результате получаются провода из этих сплавов со следующими основными свойствами:
удельная электропроводность 80-85% IACS;
временное сопротивление при растяжении более 500-540 МПа;
относительное удлинение более 4%;
температура начала разупрочнения 400-500°C.
название | год | авторы | номер документа |
---|---|---|---|
Способ изготовления электроконтактного провода для высокоскоростного железнодорожного транспорта | 2018 |
|
RU2685842C1 |
Способ изготовления контактного провода для высокоскоростного железнодорожного транспорта | 2021 |
|
RU2801137C2 |
Способ изготовления электроконтактного провода из термоупрочняемого сплава на основе меди (варианты) | 2020 |
|
RU2741873C1 |
СПОСОБ ПОЛУЧЕНИЯ КОНТАКТНЫХ ПРОВОДОВ ИЗ СПЛАВОВ НА ОСНОВЕ МЕДИ (ВАРИАНТЫ) | 1999 |
|
RU2162764C2 |
СПОСОБ ПОЛУЧЕНИЯ КОНТАКТНЫХ ПРОВОДОВ ДЛЯ СКОРОСТНЫХ ЖЕЛЕЗНЫХ ДОРОГ | 2019 |
|
RU2726547C1 |
СПОСОБ СОВМЕЩЕННОГО НЕПРЕРЫВНОГО ЛИТЬЯ И ПРОКАТКИ МЕДИ И ЕЕ СПЛАВОВ | 1995 |
|
RU2089334C1 |
СПОСОБ ПОЛУЧЕНИЯ СЛИТКА ИЗ ДИСПЕРСИОННО-ТВЕРДЕЮЩЕГО НИЗКОЛЕГИРОВАННОГО СПЛАВА НА МЕДНОЙ ОСНОВЕ И СПОСОБ ПРОИЗВОДСТВА ИЗ НЕГО МЕТАЛЛОПРОДУКЦИИ | 2007 |
|
RU2378403C2 |
Способ производства профиля из бронзы | 2021 |
|
RU2769966C1 |
ЛИТЕЙНО-ПРОКАТНЫЙ АГРЕГАТ | 1995 |
|
RU2089335C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ БИМЕТАЛЛИЧЕСКОЙ ЗАГОТОВКИ ИЗ АНТИФРИКЦИОННОГО СПЛАВА | 2015 |
|
RU2590464C1 |
Изобретение относится к технологии получения проводов контактной сети из дисперсионно-твердеющего сплава, а также к самим проводам и может быть, в частности, использовано для высокоскоростного железнодорожного транспорта. Способ получения электроконтактных проводов из сплавов на основе меди включает введение в расплав меди переходного металла и фосфора для получения сплава на основе меди, содержащего 0,1-0,3 мас.% фосфида никеля или фосфида кобальта стехиометрического состава, подачу сплава в кристаллизатор, кристаллизацию сплава в виде непрерывнолитой заготовки, прокатку упомянутой заготовки непосредственно за кристаллизацией на катанку в условиях, обеспечивающих закалку сплава, старение при 400-500°C и последующее формирование электроконтактного провода. Изобретение обеспечивает повышение прочностных свойств проводов за счет применения для легирования фосфидов Ni и Co, образующих квазибинарные разрезы на диаграммах состояния с медью и лучше, чем железо, растворяющихся в меди и имеющих меньшее сродство к кислороду. 2 н. и 5 з.п. ф-лы, 1 табл.
1. Способ получения электроконтактных проводов из сплавов на основе меди, включающий введение в расплав меди переходного металла и фосфора для получения сплава на основе меди, содержащего фосфид переходного металла стехиометрического состава, подачу сплава в кристаллизатор, кристаллизацию сплава в виде непрерывнолитой заготовки, прокатку упомянутой заготовки на катанку в условиях, обеспечивающих закалку сплава, старение и последующее формирование электроконтактного провода, отличающийся тем, что получают сплав меди, содержащий 0,1-0,3 мас.% фосфида переходного металла, выбранного из группы, включающей фосфид никеля и фосфид кобальта, прокатку упомянутой заготовки осуществляют непосредственно за кристаллизацией, а старение осуществляют при 400-500°C.
2. Способ по п.1, отличающийся тем, что введение переходного металла осуществляют путем введения лигатуры, изготовленной из спеченной смеси порошков меди и переходного металла при массовом соотношении Cu/Me=3/1.
3. Способ по п.1, отличающийся тем, что введение фосфора осуществляют путем введения лигатуры фосфористой меди.
4. Способ по п.1, отличающийся тем, что прокатку начинают при температуре не менее 800°C и заканчивают при температуре не более 100°C.
5. Способ по п.4, отличающийся тем, что кристаллизацию сплава заканчивают при температуре от 1000°C до 900°C, а прокатку начинают при температуре от 800°C до 900°C.
6. Способ по п.4, отличающийся тем, что прокатку проводят в течение не более 80 с.
7. Электроконтактный провод из сплава на основе меди, содержащий фосфид переходного металла стехиометрического состава, отличающийся тем, что он выполнен в соответствии с любым из предшествующих пп. формулы, а в качестве фосфида переходного металла содержит фосфид, выбранный из группы, включающей фосфид никеля и фосфид кобальта при следующем соотношении компонентов, мас.%:
СПОСОБ ПОЛУЧЕНИЯ КОНТАКТНЫХ ПРОВОДОВ ИЗ СПЛАВОВ НА ОСНОВЕ МЕДИ (ВАРИАНТЫ) | 1999 |
|
RU2162764C2 |
2002 |
|
RU2236918C2 | |
Транспортная газогенераторная установка | 1948 |
|
SU76618A1 |
JPS5775253 A, 11.05.1982 |
Авторы
Даты
2015-02-10—Публикация
2013-09-26—Подача