СПОСОБ ПОЛУЧЕНИЯ КОНТАКТНЫХ ПРОВОДОВ ДЛЯ СКОРОСТНЫХ ЖЕЛЕЗНЫХ ДОРОГ Российский патент 2020 года по МПК B21C23/08 C22F1/08 

Описание патента на изобретение RU2726547C1

Изобретение относится к металлургии, в частности к технологии совмещенных процессов непрерывного литья заготовок с их последующей обработкой давлением, и может быть использовано при получении бесстыковых контактных проводов из меди и ее сплавов, которые используются преимущественно для скоростных железных дорог с необходимым комплексом свойств.

Такие провода должны сочетать в себе и низкое удельное сопротивление и повышенную прочность при относительном удлинении не менее 3%.

Известны способы изготовления контактных проводов, основанные на технологии, заключающейся в получении из расплавленной меди и ее сплавов непрерывнолитой заготовки и последующем формировании провода необходимого сечения посредством пластической деформации.

Известен способ производства фасонных профилей, в т.ч. и контактных проводов, согласно которому осуществляют получение на установках непрерывного литья, вытяжку из расплава литой заготовки и последующее формирование из нее требуемого профиля методом волочения [1].

Известен способ производства контактных проводов, согласно которому проводят плавление меди, ее легирование, последующую вытяжку из расплава литой заготовки с формированием из нее деформационной обработкой методом волочения требуемого профиля провода [См. (19) RU (11) 2492010 (13) C1, (51) МПК B21C 1/00 (2006.01), (54) СПОСОБ ВОЛОЧЕНИЯ ПРОВОДА КОНТАКТНОГО ИЗ МЕДИ И ЕЕ СПЛАВОВ], где способ волочения контактного провода из меди и ее сплавов из круглой заготовки включает формирование заготовки предчистовых размеров и готового профиля чистовых размеров. При этом формирование профиля осуществляют двухступенчатой деформацией в сдвоенном комплекте роликовых волок за один проход с суммарным относительным обжатием дУ=21…37%, при этом первую ступень деформации осуществляют в волоке с трехроликовым калибром путем формирования на круглой заготовке двух вогнутых и одной выпуклой поверхностей предчистовых размеров, а вторую ступень деформации осуществляют с противонатяжением в волоке с четырехроликовым калибром путем формирования готового профиля чистовых размеров при соотношении относительных деформаций на первой и второй ступени д12=0,8…1,1.

Недостатком изделий, получаемых данными способами является низкая пластичность и нестабильная и низкая прочность изделия вследствие нестабильности технологического процесса волочения роликовыми калибрами как операции формирования профиля провода, приводящая к обрывам, а также пониженный выход годного провода в связи с волнообразной кривизной контактного провода, что приводит к невозможности его эксплуатации, особенно на скоростных линиях.

Известен способ изготовления электроконтактного провода из термоупрочняемого сплава на основе меди, в котором авторами используется конформ – метод прессования заготовки (см. патент РФ № 2 685 842 B21C 23/08 (2019.02) · C22F 1/08 (2019.02) (54) «Способ изготовления электроконтактного провода для высокоскоростного железнодорожного транспорта»). Недостатком данного способа является его сложность. Т.к. сплав плавят и кристаллизуют в вакууме, литая заготовка выходит из кристаллизатора при температуре ниже 900 °С, поэтому она полностью не закаливается предложенным способом (для закалки катанку этого сплава нужно нагревать до 950 °С в защитной атмосфере). Предложенный способ очень дорог, т. к. предложенные способы обработки давлением (равноканальное прессование) должны быть многократным (8 – 10 повторов), следовательно, этот провод получается очень дорогим. Также данный способ включает операции, при которых может происходить разупрочнение металла (прессования по схеме «Конформ» и выдавливание при температуре не выше 500°С со старением в качестве финишной операции).

Наиболее близким к заявляемому является способ производства контактных проводов (см. (19) RU (11) 2236918 (13) C2 (51) МПК B21B 1/46 (2000.01)), включающий получение расплава, его легирование, вытяжку литой заготовки и формирование из нее методом пластической деформации требуемого профиля провода. При этом получение расплава осуществляют в печи с инертной атмосферой, рабочее пространство которой состоит из трех зон - зоны плавления, зоны легирования и зоны выдачи полученного расплава в кристаллизаторы для вытяжки из них литой заготовки. В качестве легирующих используют элементы, имеющие гексагональную или тетрагональную кристаллические решетки. Формирование профиля провода осуществляют в два этапа - сначала получают пруток методом волочения со степенью деформации 15-50%, из которого затем прокаткой со степенью деформации 50-70% получают необходимый профиль провода.

Недостатком данного провода является его недостаточно высокая для использования на железных дорогах прочность - контактный провод, полученный по приведенной технологии, имеет временное сопротивление при растяжении 39,2 кгс/мм2(384 МПа), относительное удлинение 3,5%.

Такой прочности провода недостаточно для его эксплуатации на скоростных и высокоскоростных линиях. К тому же, контактный провод, получаемый прокаткой (последняя технологическая операция), в большинстве случаев обладает волнообразной кривизной, не позволяющей использовать его в контактной сети железных дорог.

Достижение в проводе заявленного в техническом результате удельного сопротивления (не более 0.0179 мкОм⋅м) обеспечивается за счет свойств используемых легирующих материалов – магния и олова. Известно влияние магния и олова, введенных в расплав меди (см. Штремель «Прочность сплавов. 1 дефекты решетки» М.: МИСИС. 1999.)

Вследствие того, что медь имеет гранецентрированную кубическую (ГЦК) кристаллическую решетку и обладает низкой энергией образования дефектов упаковки, они в ней легко образуются и оказывают значительное влияние на термомеханические свойства меди, повышая их. (Дефекты упаковки – это плоские дефекты кристаллической решетки, имеющей гексагональную плотноупакованную (ГПУ) кристаллическую решетку). Следовательно, чем ниже энергия дефектов упаковки, тем, при прочих равных условиях, лучше термомеханические свойства меди. При этом растворимость легирующих элементов в дефектах упаковки отличается от их растворимости в остальной меди. Все легирующие элементы снижают энергию дефектов упаковки, образуя в них «облака» Сузуки. В большей степени энергию дефектов упаковки в меди снижают элементы с ГПУ решеткой, например - магний и олово, которые можно вводить в расплав меди не в вакуумной печи.

Технический результат заявляемого технического решения – получение контактного провода, сочетающего в себе следующие характеристики: низкое удельное сопротивление (не более 0.0179 мкОм⋅м) и повышенную прочность (временное сопротивление при растяжении не менее 432 МПа для провода номинальным сечением 85 мм2, не менее 411 МПа – номинальным сечением 150 мм2 при относительном удлинении не менее 3%) за счет изменения способа изготовления провода в части формирования профиля заготовки, который осуществляют в два этапа.

На первом – методом конформ-процесса (экструзии) получают прессованную бесконечную заготовку круглого сечения, площадь которой больше площади литой заготовки. При включении в способ указанного конформ-процесса структура изделия становится более однородной и мелкодисперсной. В результате равномерного распределения деформации по поперечному сечению распределение энергии деформации по зернам и субзернам становится более равномерным, а уровень средней энергии зерен и субзерен повышается. Это приводит к повышению прочности материала, замедлению зарождения рекристаллизованного зерна и к ускорению роста рекристаллизованного зерна.

На втором - из этой заготовки холодным волочением получают провод необходимого профиля.

На этапе пластической деформации прессованной с помощью конформа заготовки волочением с умеренным и высоким суммарным обжатием оно приводит к образованию ярко выраженной текстуры. В результате значительных обжатий в процессе волочения все зерна измельчаются и оказываются развернутыми в направлении оси деформации (волочения).

В данном способе легирующие, вводимые в расплав меди, не оказывают влияния на структуру сплава, но незначительно оказывают влияние на электрические свойства, повышая удельное электрическое сопротивление и вместе с тем, легирующие снижают скорость роста рекристаллизованного зерна, заметно повышая жаропрочность материала, снижая его низкотемпературную ползучесть. Поэтому в материал может вводиться до 0,06 % олова или до 0,1 % магния или других элементов, которые повышают удельное электрическое сопротивление не более чем до 0,0179 мкОм/м.

Описание заявляемого способа

Способ производства контактных проводов для скоростных ж/д, включающий:

- получение расплава в печи с защитой поверхности расплава углеродными материалами, где зеркало расплава в зонах плавления и легирования покрывается защитным слоем древесного угля или графита толщиной 100-150 мм, а зеркало расплава зоны выдачи расплава - защитным слоем чешуйчатого графита той же толщины;

- легирование расплава либо оловом, либо магнием, вводя в расплав либо до 0,06 % олова, либо - до 0,1 % магния, либо других элементов, которые повышают удельное электрическое сопротивление не более чем до 0,0179 мкОм/м;

- вытяжку литой заготовки;

- формирование профиля заготовки, которое осуществляют в два этапа:

сначала методом конформ-процесса (непрерывное прессование или иначе -экструзия) получают прессованную бесконечную заготовку круглого сечения, площадь которой больше площади сечения литой заготовки,

затем холодным волочением из этой заготовки получают необходимый профиль провода.

Пример выполнения способа

Печь плавления выполнена с тремя зонами-ваннами, что позволяет обеспечить требуемую атмосферу при плавлении и равномерное распределение легирующих элементов по объему расплава (а следовательно, и по длине провода).

Медные катоды загружают в первую ванну плавильной печи, где подвергаются плавлению. В процессе плавления расплав заполняет все зоны печи, начиная от зоны загрузки и плавления и до зоны выдачи готового расплава.

Зеркало расплава в зонах плавления и легирования покрывается защитным слоем древесного угля или графита толщиной 100-150 мм, а зеркало расплава зоны выдачи расплава - защитным слоем чешуйчатого графита той же толщины.

При достижении расплавом температуры 1150°С и с началом вытяжки медной литой заготовки из расплава через графитовые мундштуки кристаллизаторов в зону легирования периодически вводят легирующие элементы.

Дальнейший процесс ведется по следующему алгоритму.

Периодически через каждые 30 минут в плавильную зону печи вводится 100 кг медных катодов марки не хуже М1к (ГОСТ 546). По истечении последующих 30 минут в зону легирования вводится 300 г лигатуры Сu - 8,5% Р. Указанный порядок следования операции загрузки и введения легирующих сохраняется в дальнейшем. Дополнительно в зону легирования через каждые 5 минут на протяжении всей плавки вводится до 120 г магния из расчета содержания в литой заготовке (с учетом угара) до 0,1% магния или 100 г олова из расчета содержания в литой заготовке до 0.06 % олова.

После намотки бухты литой заготовки диаметром 20 или 16 мм с весом 2,5 тонны она снимается с корзины приемного устройства и транспортируется к установке конформ-процесса, где за один проход получают прессованную заготовку диаметром 28 - 30 мм.

Затем прессованную заготовку волочат на контактный провод номинальной площадью сечения 85, 100, 120 или 150 мм2. Степень обжатия должна достигать 77 -90 %.

Контактный провод, полученный по приведенной технологии, имеет временное сопротивление при растяжении 412 МПа, относительное удлинение не менее 3,5%, удельное электрическое сопротивление не более 0,179 мкОм⋅м.

В заявленном способе, благодаря облегчению образования дефектов упаковки, при легировании и большой степени обжатия при холодной деформации, удается получить контактный провод сечением 120 мм2, обладающий низким удельным сопротивлением, как у низколегированной меди (не более 0,0179 мкОм⋅м) и временным сопротивлением при растяжении, как у бронзы Бр1 (не менее 412 МПа), при этом низкотемпературная ползучесть при условиях испытаний, характерной для контактных проводов марки Бр1Ф не превышает 0,32 %.

Похожие патенты RU2726547C1

название год авторы номер документа
Способ изготовления контактного провода из медного сплава 2023
  • Портнов Михаил Константинович
  • Третьяков Максим Владимирович
  • Яушев Радислав Галиевич
RU2809878C1
СПОСОБ ИЗГОТОВЛЕНИЯ КОНТАКТНЫХ ПРОВОДОВ ИЗ МЕДИ И ЕЕ СПЛАВОВ 2001
  • Алехин Владимир Яковлевич
  • Камбачеков А.Х.
RU2201311C2
СПОСОБ СОВМЕЩЕННОГО НЕПРЕРЫВНОГО ЛИТЬЯ И ПРОКАТКИ МЕДНЫХ СПЛАВОВ 1999
  • Алехин Владимир Яковлевич
RU2163855C2
Способ производства профиля из бронзы 2021
  • Кошмин Александр Николаевич
  • Зиновьев Александр Васильевич
  • Часников Александр Яковлевич
  • Потапов Пётр Владимирович
RU2769966C1
Способ изготовления электроконтактного провода для высокоскоростного железнодорожного транспорта 2018
  • Рааб Георгий Иосифович
  • Асфандияров Рашид Наилевич
  • Аксёнов Денис Алексеевич
  • Рааб Арсений Георгиевич
RU2685842C1
СПОСОБ ИЗГОТОВЛЕНИЯ ЗАГОТОВКИ КАТАНКИ ДЛЯ КОНТАКТНОГО ПРОВОДА 2000
  • Алехин В.Я.
RU2188095C2
СПОСОБ ПОЛУЧЕНИЯ ДЕФОРМИРОВАННЫХ ПОЛУФАБРИКАТОВ ИЗ СПЛАВОВ НА ОСНОВЕ АЛЮМИНИЯ 2016
  • Манн Виктор Христьянович
  • Крохин Александр Юрьевич
  • Алабин Александр Николаевич
RU2669957C1
СПОСОБ ПОЛУЧЕНИЯ КОНТАКТНЫХ ПРОВОДОВ ИЗ СПЛАВОВ НА ОСНОВЕ МЕДИ (ВАРИАНТЫ) 1999
  • Берент В.Я.
RU2162764C2
Способ изготовления электроконтактного провода из термоупрочняемого сплава на основе меди (варианты) 2020
  • Рааб Георгий Иосифович
  • Рааб Арсений Георгиевич
  • Асфандияров Рашид Наилевич
  • Аксенов Денис Алексеевич
  • Крохин Александр Юрьевич
  • Третьяков Максим Владимирович
  • Милош Янечек
RU2741873C1
СПЛАВ МЕДИ С КАЛЬЦИЕМ И СПОСОБ ПОЛУЧЕНИЯ СПЛАВА МЕДИ С КАЛЬЦИЕМ 2000
  • Алехин В.Я.
RU2198951C2

Реферат патента 2020 года СПОСОБ ПОЛУЧЕНИЯ КОНТАКТНЫХ ПРОВОДОВ ДЛЯ СКОРОСТНЫХ ЖЕЛЕЗНЫХ ДОРОГ

Изобретение относится к способу получения бесстыковых контактных проводов преимущественно для скоростных железных дорог из сплавов меди. Способ включает формирование провода в два этапа: на первом методом конформ-процесса (экструзии) получают прессованную бесконечную заготовку круглого сечения, площадь которой больше площади литой заготовки, на втором - из этой заготовки холодным волочением получают провод необходимого профиля. Провод выполняют из сплава меди с магнием или с оловом. Технический результат заключается в получении провода с удельным сопротивлением не более 0.0179 мкОм⋅м и повышенной прочностью (временное сопротивление при растяжении не менее 432 МПа для провода номинальным сечением 85 мм2, не менее 411 МПа – номинальным сечением 150 мм2 при относительном удлинении не менее 3%). 2 з.п. ф-лы, 1 пр.

Формула изобретения RU 2 726 547 C1

1. Способ производства контактных проводов для скоростных железных дорог, включающий получение расплава из сплава на основе меди, его легирование, вытяжку литой заготовки в печи с инертной атмосферой, рабочее пространство которой состоит из трех зон - зоны плавления, зоны легирования и зоны выдачи полученного расплава в кристаллизаторы для вытяжки из них круглой литой заготовки и формирование из нее провода требуемого профиля, отличающийся тем, что в расплав вводят легирующий/легирующие элемент/элементы, которые повышают удельное электрическое сопротивление не более чем до 0,0179 мкОм⋅м, при этом формирование профиля провода осуществляют в два этапа: сначала методом конформ получением заготовки, площадь сечения которой больше площади сечения литой заготовки, затем из полученной заготовки холодным волочением получают необходимый профиль провода.

2. Способ по п.1, отличающийся тем, что в расплав в качестве легирующего элемента вводят до 0,06 % олова.

3.Способ по п.1, отличающийся тем, что в расплав в качестве легирующего элемента вводят до 0,1 % магния.

Документы, цитированные в отчете о поиске Патент 2020 года RU2726547C1

2002
RU2236918C2
СПОСОБ ВОЛОЧЕНИЯ ПРОВОДА КОНТАКТНОГО ИЗ МЕДИ И ЕЕ СПЛАВОВ 2012
  • Славин Вячеслав Семенович
  • Норец Александр Иванович
RU2492010C1
Способ изготовления электроконтактного провода для высокоскоростного железнодорожного транспорта 2018
  • Рааб Георгий Иосифович
  • Асфандияров Рашид Наилевич
  • Аксёнов Денис Алексеевич
  • Рааб Арсений Георгиевич
RU2685842C1
JP 2012087381 A, 10.05.2012
JP 6155923 B2, 05.07.2017.

RU 2 726 547 C1

Авторы

Сергеев Андрей Евгеньевич

Бертретдинов Рафаэль Русланович

Семенов Николай Владимирович

Мигалин Владимир Вячеславович

Грачев Глеб Николаевич

Гершман Иосиф Сергеевич

Миронос Николай Васильевич

Даты

2020-07-14Публикация

2019-07-05Подача