Изобретение относится к области строительных материалов, в частности к технологии получения пеностекла, предназначенного для тепловой изоляции строительных конструкций зданий и сооружений, а также в качестве звукопоглощающего, архитектурного и конструкционного строительного материала.
В настоящее время в строительстве в качестве конструкционного и отделочного материалов широко используется пеностекло. Этот материал изготавливается в виде блоков, отделочных плит и в виде гранул. Пеностекло представляет собой легкий пористый материал из стекла с равномерно распределенными ячейками (порами) диаметром 0,1-6 мм, разделенными тонкими стенками (Технология стекла. Л.М. Бутт, В.В. Полляк. М.: Госстройиздат, 1960. С.304). Ячеистое строение пеностекла может быть получено:
а) введением в состав стекольной шихты веществ, вызывающих обильное пенообразование в процессе варки стекла;
б) пронизыванием расплава стекла воздухом или другими газами;
в) вспениванием размягченного стекла под вакуумом;
г) вспениванием измельченного стекла пенообразующими веществами, например мыльным корнем, на холоде с последующим фиксированием структуры спеканием частиц стекла (холодный способ);
д) спеканием смеси порошкообразного стекла с газообразователем (порошковый способ) (Стекло. Справочник. А.А. Аппен, М.С. Асланова, Н.П. Амосов, М.В. Артамонова и др. Под ред. Н.М. Павлушкина. М., Стройиздат, 1973, 487 с. (С.164)
В промышленности для изготовления пеностекольных плит и блоков применяют в основном порошковый способ, который заключается в спекании смеси из тонкомолотого стекольного порошка с газообразователем. В качестве газообразователей могут быть использованы углеродные вещества (кокс, коксик, сажа), различные карбонаты (известняк, мрамор, доломит), пиролюзит и многие другие (Технология стекла. Л.М. Бутт, В.В. Полляк. М. Госстройиздат, 1960. С.304).
Блочное пеностекло имеет ряд качеств, которые делают его полезными как для сверхнизкотемпературной теплоизоляции (минус 180°C), так и для сверхвысокой (плюс 400°C). Влагопроницаемость и паропроницаемость пеностекла равны нулю. Пеностекло жаростойко, обладает высокой прочностью при низкой плотности. В отличие от ячеистых газонаполненных полимерных материалов, пеностекло устойчиво к химически и биологически активным средам, а также к термическому воздействию. Качество и показатели свойств блочного пеностекла зависят от его плотности, размера и распределения пор, толщины стенок пор, объемного водопоглощения и др.
К недостаткам пеностекла можно отнести большие затраты на оборудование, сырье и технологическую энергию.
Известны различные шихты, смеси, композиции, ингредиенты, которые применяются для получения конечного продукта - пеностекла. Применение тех или иных композиций для производства пеностекла может быть обусловлено целым рядом особенностей местных условий и задач, например наличием конкретной сырьевой базы, задачами экологии, составом и характером утилизируемого мусора и отходов, стоимостью энергоресурсов, потребностью и экономической целесообразностью применения пеностекла, конкретного назначения и заданных характеристик. Следствием этого многообразия является создание большого ряда составов и технологий, учитывающих конкретные особенности такого производства.
Так, например, в качестве основы, наиболее распространенных исходных шихт, используют бой силикатного стекла (Шилл Ф. Пеностекло. - М.: Издательство литературы по строительству, 1965, с.15-19; патент РФ №2307097, С03С 11/00, заявка №2005131266, опубл. 27.09.2007, бюл. №27). Достоинства таких шихт: дешевое исходное сырье; недостатки: сложность сбора и подготовки стеклобоя, невысокое качество пеностекла из-за непостоянства состава стекла стеклобоя, что не позволяет гарантировать стабильность качества пеностекла при механическом и автоматизированном производстве. Наиболее близкой (прототип) является шихта для получения пеностекла, содержащая 98,5-98,7 масс. % тонкомолотого до удельной поверхности 4000-4200 см2/г стекла состава, масс. %: SiO2 - 70,6; СаO - 6,0; MgO - 2,7; Аl2O3 - 5,0; Na2O - 13,8; Fe2O3 - 0,72; К2O - 1,9; SO3 - 0,3 и 1,5-1,7 масс. % газообразователя - антрацита (Демидович Б.К. Пеностекло. Минск, «Наука и техника», 1975, с.6-9). Достоинства применения подобной шихты: высокое качество пеностекла, обусловленное постоянством состава стекла; недостатки: высокая стоимость готовой продукции.
Технический результат, на решение которого направлено изобретение, заключается в утилизации совместного отхода производств энергонасыщенных материалов - тротила и нитробензола и удешевлении производства пеностекла с сохранением его качества.
Технический результат достигается тем, что в шихте для получения пеностекла, включающей тонкомолотые до удельной поверхности 4000-4200 см2/г силикатное стекло и газообразователь, в качестве силикатного стекла используют стекло состава, масс. %: SiO2 - 60-72,5; СаО - 4,5-7,0; MgO - 1,5-3,5; Аl2O3 - 1,0-2,5; Na2O - 12,5-16,5, изготовленное из совместного отхода производств тротила и нитробензола, а в качестве газообразователя используют доломит в количестве 1,5-2,2% от общей массы шихты.
Производство энергонасыщенных соединений, таких как тротил и нитробензол, сопровождается образованием значительного количества отходов. Так, например, при очистке тротила-сырца образуются десятки тысяч тонн сульфитного щелока - маточника производства тротила, содержащего натриевые соли сульфокислот несимметричных изомеров тротила, нитрофенолов, нитрокислот, нитрит и нитрат натрия, соду, сульфат и сульфит натрия, сульфид и хлорид натрия (Е.Ю. Орлова. Химия и технология бризантных взрывчатых веществ. Химия, 1973. - 688 с.).Зачастую производства тротила и нитробензола располагаются на территории одного предприятия. После получения нитробензола производят его отделение от нитрующей смеси кислот (азотной и серной), а затем промывку аммиачной водой. Маточник производства нитробензола содержит около 8-10% растворенных в воде органических (нитропроизводных бензола) и неорганических соединений, основным из которых является сульфат аммония.
Согласно действующего регламента, обезвреживание токсичного маточника производства нитробензола допускается производить совместно с сульфитными щелоками производства тротила. Для этого производят слив маточника нитробензола в хранилище с маточником (сульфитным щелоком) тротила. По принятой в настоящее время технологии смесь маточников тротила и нитробензола после предварительного упаривания до 30-40%-ной концентрации по твердому остатку, направляют на сжигание, а образующуюся золу в отвал. Под воздействием атмосферных осадков она превращается в токсичные стоки, загрязняющие грунтовые воды, что приводит к существенному ухудшению экологической обстановки.
Утилизация отходов крупнотоннажных химических производств путем их использования при получении стекла позволяет улучшить экологическую обстановку в районах производства тротила и нитробензола и значительно удешевить производство пеностекла с сохранением его качества.
Процесс изготовления силикатного стекла, и на его основе пеностекла заключается в следующем.
Отход производства энергоемких соединений - смесь маточников производства тротила и нитробензола после проведения химического анализа смешивается с необходимым количеством кремнезема. Внесение воды с раствором маточника в шихту способствует ее увлажнению, что, наряду с присутствием слабых щелочей в растворе, приводит к образованию на поверхности частиц кварцевого песка равномерно распределенной пленки щелочных соединений, а это, в свою очередь, благоприятно сказывается на процессах силикатообразования. Кроме того, увлажнение сырьевых материалов оказывает также благоприятное влияние и на однородность шихты (Химическая технология стекла и ситаллов. Артамонова М.В., Асланова М.С., Бужинский И.М. и др. Под ред. Н.М. Павлушкина - М., Стройиздат, 1983, с.65). Температура маточника должна составлять 50-60°С.Подготовленный таким образом кремнезем смешивают с остальными измельченными компонентами шихты, одним из которых является твердый совместный отход производств тротила и нитробензола - огарок маточников энергоемких соединений. Стоит отметить, что благодаря существующей технологии обезвреживания смеси маточников производства тротила и нитробензола методом сжигания, образующийся огарок представляет собой тонкодисперсную однородную композицию, не требующую длительного дополнительного измельчения. Типичный химический состав огарка смеси маточников тротила и нитробензола приведен в таблице 1.
Полученную шихту загружают в тигли, которые подают в печь при температуре 900-1100°С. Варку стекла осуществляют при температуре 1300-1350°С. Благодаря наличию в шихте карбонатов натрия, магния и сульфата аммония химические процессы в шихте начинаются при сравнительно низких температурах (330-350°С).
При 780-880°С происходит появление жидкой фазы за счет эвтектик силикатов магния и натрия с кремнеземом и двойных углекислых солей с Na2CO3 (Химическая технология стекла и ситаллов. Артамонова М.В., Асланова М.С., Бужинский И.М. и др. Под ред. Н.М. Павлушкина, - М, Стройиздат, 1983, С.107). Однако наличие в составе отходов различных солей натрия и аммония (ускорителей варки) приводит к появлению легкоплавких соединений, расплавы которых образуются раньше (Технология стекла. Бутт Л.М., Поляк В.В. - М., Гос. изд-во литературы по строительству, архитектуре и строительству, 1960. С.132-133).
Непосредственное участие в реакциях восстановления сульфата натрия принимают участие углерод (в виде сажи), который присутствует в огарке (от 1,1 до 5%), а также органические восстановители, внесенные в шихту в составе маточника энергоемких соединений и газообразные продукты его разложения СО, Н2, СН4 и т.п., которые создают восстановительную атмосферу в шихте. В случае низкого содержания сажи в огарке в шихту дополнительно вводят углеродсодержащий материал в виде угля или древесных опилок.
Восстановление сульфата натрия начинается при 740-800°С по реакции
Na2SO4+2С=Na2S+2СO2
Стоит отметить, что присутствующая в огарке и маточнике вода, ускоряет процессы образования силикатов. Это связано с образованием едкого натра, который взаимодействует с кремнеземом энергичнее, чем сода
Na2S+2Н2O=2NaOH+H2S;
2NaOH+SiO2=2Na2SiO3+H2O
При 865°C начинаются процессы силикатообразования
Na2SO4+Na2S+2SiO2=2Na2SiO3+SO2+S
CaO+SiO2=CaSiO3
Гомогенизация требуют повышения температуры стекломассы до 1300-1350°C. Присутствие сульфата натрия, хлорида натрия и сульфата аммония (до 3%) в шихте способствуют ускорению процесса изготовления стекломассы, ее осветлению и гомогенизации (Справочник по производству стекла. Под ред. И.И. Китайгородского. А.И. Бережной, Ю.А. Бродский, З.И. Бронштейн и др. Под ред. Н.М. Павлушкина, - М., Гос. изд-во литературы по строительству, архитектуре и строительству, 1963. С.160-162).
Для оценки качества стекломассы, получаемой на основе совместного отхода энергоемких соединений, были произведены лабораторные опытные плавки стекольных шихт: максимальная температура нагрева стекломассы составляла 1300-1350°С, а время выдержки расплавленной стекломассы при максимальной температуре нагрева - 35-60 мин. Стекольные шихты были рассчитаны на получение силикатного стекла состава: мас.%: SiO2 72,0; Аl2O3 1,5; СаO 7,0; Na2O 16,5; MgO 3,0. Для сравнения были изготовлены образцы стекломассы того-же состава из карбонатных шихт, приготовленных с использованием традиционных сырьевых материалов.
В таблице 2 приведен состав стекольных шихт для получения алюмомагнезиальной стекломассы состава, масс. %: SiO2 - 72,0; СаО - 7,0; MgO - 3,0; Аl2O3 - 1,5; Na2O - 16,5 и его характеристики.
плотность,
г/см3
совместного
отхода
производств
тротила
и нитробензола
Зола 29,22
Мел 1,08
Доломит 10,36
Глина 2,41
Уголь 1,84
Смесь маточников 9,3
(по твердому веществу)
однородное,
трещины
традиционных
материалов
Глина 3,26
Как видно из табличных данных, суммарное содержание совместного отхода производств тротила и нитробензола в составе шихты используемой для получения стекла по данному изобретению составляет более 35%, что значительно снижает стоимость шихты для получения стекла и позволяет полностью утилизировать текущие отходы производств тротила и нитробензола.
Методика получения пеностекла состоит в следующем: образцы силикатных стекол измельчают до частиц диаметром 0,2 мм и менее. В качестве газообразователя используют доломит в количестве 2% от общей массы шихты, который также измельчают до размера порошка 0,2 мм и менее. Подготовленные таким образом компоненты после взвешивания тщательно перемешивают, после чего подвергают совместному измельчению до удельной поверхности 4000-4200 см2/г. Полученную шихту загружают в разбираемую стальную форму. На внутреннюю поверхность стальной формы тщательно наносят тонкий слой (1,5-2 мм) пастообразной огнеупорной мастики «Мертель» на основе огнеупорного порошка и каолиновой глины. После обмазки формы мастикой ее подсушивают в печи при температуре 350°С в течение 15 минут.
Плотно закрытую форму с шихтой помещают в печь при температуре 450°С. В течение 15 минут печь нагревают до 800°С, после чего нагрев прекращают, и печь резко охлаждают до температуры 500-600°С, замораживая тем самым ячеистую структуру пеностекла. Далее следует отжиг пеностекла и охлаждение.
Были получены образцы пеностекла на основе стекол, изготовленных из совместного отхода производства тротила и нитробензола и традиционных материалов. Качество образцов пеностекла приведено в таблице 3.
тура обжига/ выдержка,°С/мин
при сжатии, МПа (кг/см2)
плотность, г/см3
на основе совместных
отходов
800/10
8,30 (83,0)
0,33
8,0
поры
на основе традиционного
сырья
800/10
4,75 (47,5)
0,40
18,0
поры
Как видно из полученных результатов качество образцов пеностекла, полученных из совместного отхода производств тротила и нитробензола и традиционных материалов практически одинаково. Характеристики образцов пеностекла, полученных на основе опытной и традиционной шихт, соответствуют основным показателям промышленных образцов пеностекла, изготовляемого, например, для теплоизоляционно-конструкционных блоков (Изделия и материалы из пеностекла. Технические условия ТУ 5914-001-73893595-2005. Разработаны в ЗАО «Пермское производство пеносиликатов»).
Таким образом, получение образцов пеностекла на основе силикатного стекла, изготовленного из совместного отхода производств тротила и нитробензола, приводит к удешевлению пеностекла без снижения его качества.
название | год | авторы | номер документа |
---|---|---|---|
ШИХТА ДЛЯ ИЗГОТОВЛЕНИЯ ПЕНОСТЕКЛА | 2013 |
|
RU2542064C1 |
ШИХТА ДЛЯ ПОЛУЧЕНИЯ СИЛИКАТНОГО СТЕКЛА | 2012 |
|
RU2520978C2 |
СПОСОБ СОВМЕСТНОЙ ПЕРЕРАБОТКИ КАЛЬЦИЙСОДЕРЖАЩЕГО И СУЛЬФАТСОДЕРЖАЩЕГО ОТХОДОВ | 2013 |
|
RU2555488C2 |
ШИХТА ДЛЯ ПОЛУЧЕНИЯ ТАРНОГО СТЕКЛА | 2014 |
|
RU2555741C1 |
ШИХТА ДЛЯ ПОЛУЧЕНИЯ СТЕКЛА | 2012 |
|
RU2494982C1 |
ШИХТА ДЛЯ ПОЛУЧЕНИЯ ПЕНОСТЕКЛА | 2007 |
|
RU2357933C2 |
ШИХТА ДЛЯ ПОЛУЧЕНИЯ СВИНЦОВОГО СТЕКЛА | 2013 |
|
RU2559941C2 |
СПОСОБ ПРОИЗВОДСТВА СТЕКЛА | 2005 |
|
RU2301783C2 |
ФРАКЦИОННЫЙ УТЕПЛИТЕЛЬ ИЗ ВСПЕНЕННОГО СТЕКЛА ДЛЯ ЖЕЛЕЗНОДОРОЖНОГО СТРОИТЕЛЬСТВА | 2017 |
|
RU2681157C2 |
СПОСОБ АКТИВАЦИИ ШИХТЫ ДЛЯ ПРОИЗВОДСТВА ПЕНОСТЕКЛА | 2011 |
|
RU2483035C1 |
Изобретение относится к области получения пеностекла. Технический результат изобретения заключается в расширении сырьевой базы и улучшении экологии окружающей среды за счет утилизации отходов производств энергонасыщенных материалов - тротила и нитробензола. Шихта для получения пеностекла изготавливается из мелкоизмельченного силикатного стекла следующего состава, мас.%: SiO2 - 60-72,5; СаО - 4,5-7,0; MgO - 1,5-3,5; Аl2O3 - 1,0-2,5; Na2O - 12,5-16,5. Стекло изготовлено на основе отходов производств тротила и нитробензола. К стеклу добавляют доломит в количестве 1,5-2,2% от общей массы шихты. 3 табл.
Шихта для получения пеностекла, включающая тонкомолотые до удельной поверхности 4000-4200 см2/г силикатное стекло и газообразователь, отличающаяся тем, что в качестве силикатного стекла используют стекло состава, мас.%: SiO2 - 60-72,5; СаО - 4,5-7,0; MgO - 1,5-3,5; Аl2O3 - 1,0-2,5; Na2O - 12,5-16,5, изготовленное из совместного отхода производства тротила и нитробензола, а в качестве газообразователя используют доломит в количестве 1,5-2,2% от общей массы шихты.
ДЕМИДОВИЧ Б.К | |||
Пеностекло, Минск, Наука и техника, 1975, с.6-9 | |||
Сырьевая смесь для получения пористого заполнителя | 1990 |
|
SU1775379A1 |
СЫРЬЕВАЯ СМЕСЬ ДЛЯ ПОЛУЧЕНИЯ ПОРИСТОГО ЗАПОЛНИТЕЛЯ | 2008 |
|
RU2381190C1 |
СПОСОБ ПОЛУЧЕНИЯ ПОРИСТЫХ СТЕКЛОМАТЕРИАЛОВ ИЗ МЕТАЛЛУРГИЧЕСКИХ ШЛАКОВ | 1996 |
|
RU2114797C1 |
JP 54083915 A, 04.07.1979 |
Авторы
Даты
2015-02-20—Публикация
2013-08-15—Подача