СПОСОБ УТИЛИЗАЦИИ АКТИВНОГО МАТЕРИАЛА ОКСИДНО-НИКЕЛЕВОГО ЭЛЕКТРОДА НИКЕЛЬ-КАДМИЕВОГО АККУМУЛЯТОРА Российский патент 2015 года по МПК C22B23/00 C22B7/00 C22B3/04 C25C1/08 

Описание патента на изобретение RU2543626C1

Изобретение относится к цветной и порошковой металлургии, а именно к способам утилизации активных материалов щелочных аккумуляторов.

Известен способ извлечения металлов [RU заявка 2006104513, опубл. 10.09.2007] из твердых металлосодержащих сред или подземным выщелачиванием руд обработкой реагентом.

Этот способ отличается сложностью, а также отсутствием связи применяемых технологических приемов с функциональными характеристиками продукта утилизации.

Наиболее близким к заявляемому является способ получения медных порошков из медьсодержащих аммиакатных отходов, включающий их растворение и последующий электролиз раствора. Электролиз ведут на виброэлектродах при плотности тока 0,2-0,5 A/см2, при этом анод выполнен из анодированного свинца, а соотношение компонентов электролита: 40-60 г/л хлорида натрия на 20-30 г/л медьсодержащих аммиакатных отходов (RU №2469111, МПК C22B 7/00, 2011).

Однако этот способ имеет ограниченное количество факторов управления, направленных на повышение выхода и производительности получаемого порошка. Проблема низкого выхода продукта связана с протекающим параллельно основному процессу выделению водорода, доля которого сопоставима с основным процессом ввиду смещения его потенциала в отрицательную сторону за счет комплексообразования с молекулами аммиака. В связи с тем что при этом электролиз идет при постоянном токе, то существует только возможность снижения плотности тока, что снижает производительность и влияет на дисперсность получаемого порошка. Кроме того, способ не предусматривает утилизацию остаточных продуктов процесса, что ограничивает его экономическую эффективность и составляет экологическую опасность.

Перед авторами стояла задача повышения выхода и производительности получения ультрамикронных электролитических порошков никеля из активного материала оксидно-никелевого электрода (ОНЭ), повышение экономической эффективности и снижение экологической опасности процесса.

Решение этой задачи достигается тем, что в способе утилизации активного материала ОНЭ, заключающемся в растворении активной массы и последующем электролизе, растворение активной массы проводят в 1М растворе хлорида аммония, а электролиз полученного раствора осуществляют с титановым виброкатодом и графитовым анодом в режиме импульсов тока прямоугольной формы амплитуды 0,3-0,5 A/см2 при длительности импульса 0,05-0,15 с и длительности паузы 0,05-0,1 с. Далее идет отделение полученного порошка путем фильтрации, промывка и сушка. Раствор после электролиза используют для растворения новых порций активного материала.

Для пояснения предлагаемого способа на Фиг.1 представлена технологическая схема утилизации активного материала оксидно-никелевого электрода никель-кадмиевого аккумулятора, состоящая из смесителя 1 насосов 2, электролизера 3, фильтра 4, сушильной печи 5.

Сущность предлагаемого способа состоит в том, что в условиях вибрации катода увеличивается предельный ток диффузии восстановления аммиакатов никеля, что увеличивает долю количества электричества этого процесса по отношению к восстановлению водорода. Режим импульсного тока позволяет ограничить рост потенциала и тем самым уменьшить парциальный ток восстановления водорода. Совместное действие механической вибрации и импульсного режима электролиза дает возможность уменьшить дисперсность получаемого порошка за счет акустического диспергирования и прерывания роста зародышей образующихся частиц. Подкисление электролита за счет выделения кислорода на нерастворимом графитовом аноде позволяет использовать отработанный электролит для обработки новых порций активного материала, чем создается замкнутый технологический цикл и повышается экологическая безопасность способа. Увеличение экономической эффективности связано с ростом производительности и снижением удельного расхода воды и реактивов на получение продукта.

Пример осуществления способа.

Активную массу ОНЭ помещают в проточный смеситель 1, добавляют 1M раствор хлорида аммония из расчета 200 г активной массы на 1 л раствора, выдерживают в проточном смесителе без прокачки раствора в течение 10-12 часов для накопления в растворе первоначального количества аммиаката никеля, включают прокачивание раствора насосами 2 из смесителя в электролизер 3 и из электролизера 3 в смеситель 2. Далее включают режим вибрации титанового катода, включают импульсный ток с импульсами прямоугольной формы амплитуды 0,3-0,5 A/см2 при длительности импульса 0,05-0,15 с и длительности паузы 0,05-0,1 с (на схеме не показано). В процессе электролиза по мере накопления проводят отбор порошка, отделяют его путем фильтрации с возвращением электролита в проточный смеситель 1, промывают на фильтре 4 и сушат в сушильной печи 5 при температуре 110°C в течение 2 часов.

Полученный порошок характеризуется функцией распределения размеров частиц с максимумом в диапазоне 4-6 мкм. Форма частиц порошка является пластинчатой, с размерами отдельных составляющих 30-60 нм. Производительность процесса получения никелевого порошка составляет 0,89 г/см2ч, выход по веществу - 91%.

Для подтверждения получения по данному способу ультрамикронных электролитических порошков никеля нами представлена гистограмма дифференциального и интегрального распределения частиц никелевого порошка по размерам (Фиг.2).

Предлагаемый способ апробирован на кафедре функциональных наносистем и высокотемпературных материалов Московского института сталей и сплавов.

На основании вышеизложенного и с учетом проведенного патентно-информационного поиска считаем, что разработанный «Способ утилизации активного материала оксидно-никелевого электрода никель-кадмиевого аккумулятора» может быть защищен патентом Российской Федерации.

Похожие патенты RU2543626C1

название год авторы номер документа
Способ изготовления анода литий-ионного аккумулятора на основе олова 2022
  • Липкин Валерий Михайлович
  • Липкин Михаил Семенович
  • Корбова Екатерина Вадимовна
  • Волошин Вадим Александрович
RU2795516C1
СПОСОБ ИЗГОТОВЛЕНИЯ ОКСИДНО-НИКЕЛЕВОГО ЭЛЕКТРОДА ЩЕЛОЧНОГО АККУМУЛЯТОРА 1998
  • Галкин В.В.
  • Кулыга В.П.
  • Лапшин В.Ю.
  • Лихоносов С.Д.
  • Митрохин А.П.
RU2148284C1
СПОСОБ ИЗГОТОВЛЕНИЯ ОКСИДНО-НИКЕЛЕВОГО ЭЛЕКТРОДА ДЛЯ ЩЕЛОЧНОГО АККУМУЛЯТОРА 2009
  • Волынский Вячеслав Виталиевич
  • Тюгаев Вячеслав Николаевич
  • Волынская Валентина Васильевна
  • Гришин Сергей Владимирович
RU2407112C1
СПОСОБ ИЗГОТОВЛЕНИЯ ОКСИДНО-НИКЕЛЕВОГО ЭЛЕКТРОДА ЩЕЛОЧНОГО АККУМУЛЯТОРА 1990
  • Кулыга В.П.
  • Лихоносов С.Д.
  • Овчаренко С.Е.
  • Паюсова З.Э.
RU1695788C
СПОСОБ ИЗГОТОВЛЕНИЯ ВОЛОКОННОГО ОКСИДНО-НИКЕЛЕВОГО ЭЛЕКТРОДА ЩЕЛОЧНОГО НИКЕЛЬ-КАДМИЕВОГО АККУМУЛЯТОРА 2011
  • Волынский Вячеслав Виталиевич
  • Тюгаев Вячеслав Николаевич
  • Гришин Сергей Владимирович
  • Клюев Владимир Владимирович
  • Чипига Игорь Викторович
  • Якубовская Екатерина Владимировна
RU2482569C1
СПОСОБ ИЗГОТОВЛЕНИЯ ВОДНОЙ ПАСТЫ ГИДРАТА ЗАКИСИ НИКЕЛЯ 2015
  • Васев Александр Васильевич
  • Содома Владислав Ильич
RU2583373C1
СПОСОБ ПОЛУЧЕНИЯ МЕДНЫХ ПОРОШКОВ ИЗ МЕДЬСОДЕРЖАЩИХ АММИАКАТНЫХ ОТХОДОВ 2011
  • Рыбалко Елена Александровна
  • Липкин Михаил Семенович
  • Науменко Александр Александрович
  • Дорофеев Юрий Григорьевич
  • Липкин Валерий Михайлович
RU2469111C1
ГЕРМЕТИЧНЫЙ НИКЕЛЬ-КАДМИЕВЫЙ АККУМУЛЯТОР 1999
  • Постников В.Н.
RU2168810C2
СПОСОБ ПОЛУЧЕНИЯ ПОРОШКА МЕТАЛЛА ЭЛЕКТРОЛИЗОМ 2014
  • Матренин Владимир Иванович
  • Паршакова Наталия Владимировна
  • Стихин Александр Семёнович
  • Тюрин Александр Сергеевич
RU2553319C1
СПОСОБ ИЗГОТОВЛЕНИЯ ОКСИДНО-НИКЕЛЕВОГО ЭЛЕКТРОДА 2009
  • Морозова Анастасия Петровна
  • Селиванов Валентин Николаевич
RU2406185C1

Иллюстрации к изобретению RU 2 543 626 C1

Реферат патента 2015 года СПОСОБ УТИЛИЗАЦИИ АКТИВНОГО МАТЕРИАЛА ОКСИДНО-НИКЕЛЕВОГО ЭЛЕКТРОДА НИКЕЛЬ-КАДМИЕВОГО АККУМУЛЯТОРА

Изобретение относится к утилизации активного материала оксидно-никелевого электрода никель-кадмиевого аккумулятора. Для этого проводят растворение активной массы в 1M растворе хлорида аммония. Затем осуществляют электролиз раствора с титановым виброкатодом и графитовым анодом в режиме импульсов тока прямоугольной формы амплитуды 0,3-0,5 A/см2 при длительности импульса 0,05-0,15 с и длительности паузы 0,05-0,1 с. Перед электролизом раствор выдерживают в проточном смесителе 10-12 часов. Способ позволяет получать никелевый порошок размерами частиц в диапазоне 4-6 мкм. Техническим результатом является повышение выхода продукта и производительности процесса, получение ультрамикронных электролитических порошков никеля, повышение экономической эффективности и экологической безопасности процесса. 2 ил., 1 пр.

Формула изобретения RU 2 543 626 C1

Способ утилизации активного материала оксидно-никелевого электрода никель-кадмиевого аккумулятора, включающий растворение активного материала, отличающийся тем, что растворение проводят в 1M растворе хлорида аммония в проточном смесителе, а после растворения осуществляют электролиз полученного раствора с титановым виброкатодом и графитовым анодом в режиме импульсов тока прямоугольной формы амплитуды 0,3-0,5 A/см2 при длительности импульса 0,05-0,15 с и длительности паузы 0,05-0,1 с, при этом до начала электролиза раствор в проточном смесителе выдерживают 10-12 часов, а в процессе электролиза периодически проводят отбор порошка никеля, отделяют его фильтрацией с возвращением отработанного раствора в смеситель для растворения новых порций активного материала, промывают и сушат.

Документы, цитированные в отчете о поиске Патент 2015 года RU2543626C1

СПОСОБ ПЕРЕРАБОТКИ ОТРАБОТАННЫХ ЩЕЛОЧНЫХ АККУМУЛЯТОРОВ 2000
  • Геллерштейн И.Р.
  • Клементьев М.В.
  • Толыпин Е.С.
RU2178933C1
СПОСОБ ПЕРЕРАБОТКИ НИКЕЛЬ-КАДМИЕВОГО СКРАПА 2002
  • Бердников И.А.
  • Серов К.О.
RU2222618C1
СПОСОБ ПЕРЕРАБОТКИ НИКЕЛЬ-КАДМИЕВОГО СКРАПА 1999
  • Бердников И.А.
  • Ждан Н.Н.
  • Ломовцев В.И.
  • Печелиев С.А.
  • Самарин Ю.Е.
RU2164956C1
Способ переработки пластин никелевожелезных (кадмиевых) аккумуляторов 1975
  • Кошкаров Василий Яковлевич
  • Ферштатер Асир Абрамович
  • Окунев Аркадий Иванович
  • Сосновский Олег Вадимович
  • Ширяев Геннадий Петрович
  • Закиров Фагин Измайлович
  • Сорокин Александр Алексеевич
SU539087A1
Способ определения влагостойкости непроводящих электрический ток материалов 1977
  • Эйдукявичюс Кястутис Клеменсо
  • Плавина Ирма Захаровна
  • Янкаускас Тадас-Римантас Степоно
SU608098A1
СПОСОБ ИЗГОТОВЛЕНИЯ ПРОПИЛЕНА И НИЗКОСЕРНИСТОГО МАЗУТНОГО КОМПОНЕНТА 2020
  • Сюй, Юхао
  • Бай, Сюйхуэй
  • Се, Синьюй
  • Цуй, Шоуе
  • Ван, Синь
  • Цзо, Яньфэнь
RU2803778C1
US 5437705 A, 01.08.1995

RU 2 543 626 C1

Авторы

Чижов Александр Юрьевич

Лыткин Николай Александрович

Липкин Валерий Михайлович

Липкина Татьяна Валерьевна

Мишарев Александр Сергеевич

Липкин Михаил Семенович

Корбова Екатерина Вадимовна

Даты

2015-03-10Публикация

2013-09-10Подача