НАКОНЕЧНИК КИСЛОРОДНО-КОНВЕРТЕРНОЙ ФУРМЫ Российский патент 2015 года по МПК C21C5/48 

Описание патента на изобретение RU2543628C2

Изобретение относится к металлургии, в частности к конструкции наконечника кислородно-конвертерной фурмы.

Для повышения стойкости наконечников кислородно-конвертерных фурм предлагалось много различных вариантов. Например, известна фурма для продувки металла, содержащая трубы для подвода и отвода охлаждающей воды, соединенные с головкой, имеющей сопла, и прикрепленный к соплам направляющий вкладыш, в центре которого выполнено отверстие для пропуска воды (а.с. СССР №370242, публ. 18.04.1973 г.).

Недостатком данной фурмы является ее низкая стойкость из-за недостаточного охлаждения внутренней нерабочей поверхности нижней тарелки наконечника фурмы.

Наиболее близким к заявленному является наконечник кислородно-конвертерной фурмы, содержащий головку и фланец, соединенный соплами, которые соединены по наружной поверхности дополнительным фланцем, а на внутренней нерабочей поверхности головки наконечника выполнены радиально расположенные и проходящие между периферийными соплами перегородки (патент RU 2239661, публ. 10.11.2004 г.).

Недостатком фурмы известной конструкции является ее низкая стойкость из-за недостаточно упорядоченного перетекания оборотной воды из входного кольцевого канала в выходной и натекания ее на расположенные по окружности сопла. Это сопровождается образованием застойных зон и вихревых течений за цилиндрическими корпусами сопел, уменьшением скорости течения охладителя и теплоотдачи, а также увеличением температурных перепадов и возникновением опасных термогидравлических напряжений.

Технический результат - повышение стойкости наконечника кислородно-конвертерной фурмы.

Технический результат достигается тем, что в разработанном наконечнике кислородно-конвертерной фурмы, содержащем нижнюю тарелку с перегородками на ее внутренней нерабочей поверхности, разделительную тарелку, верхнюю тарелку и сопла, угол каждой перегородки, образуемый пересечением внутренней и наружной поверхностями перегородки, направлен в одну сторону по окружности. Дополнительное повышение стойкости наконечника кислородно-конвертерной фурмы удается получить в случае, если кратчайшее расстояние между углом перегородки, образуемым пересечением внутренней и наружной поверхностей перегородки, до наружной поверхности ближайшего сопла (bвых) составляет 0,5-1,5 от bвх, где bвх - минимальное расстояние между двумя соседними наружными поверхностями сопел на внутренней нерабочей поверхности нижней тарелки, а высота перегородки (h) составляет 0,1-1,0 от Н, где Н - расстояние между внутренней поверхностью нижней тарелки и ближайшей к ней поверхностью разделительной тарелки вдоль высоты перегородки. Перегородки одной своей стороной могут примыкать к наружной поверхности сопла, при этом длина примыкающей части каждой перегородки (lд) составляет 0,1-0,6 от длины окружности наружной поверхности сопла.

На фиг.1, 2 и 3 изображен наконечник кислородно-конвертерной фурмы.

Наконечник кислородно-конвертерной фурмы состоит из верхней тарелки 1, сопел 2, разделительной тарелки 3, нижней тарелки 4, перегородок 5. Буквами обозначено: R 1 c - радиус наружной поверхности сопла; bвых - кратчайшее расстояние между углом перегородки, образуемым пересечением внутренней и наружной поверхностей перегородки, до наружной поверхности ближайшего сопла; bвх - минимальное расстояние между двумя соседними наружными поверхностями сопел на внутренней нерабочей поверхности наружной тарелки; h - высота перегородки - расстояние от внутренней поверхности нижней тарелки до верхней поверхности перегородки; Н - расстояние между внутренней поверхностью наружной тарелки и ближайшей к ней поверхностью разделительной тарелки вдоль высоты перегородки; lд - длина дуги примыкания перегородки к наружной поверхности сопла; А - наружная поверхность перегородки; В - внутренняя поверхность перегородки; С - угол перегородки, образуемый внутренней и наружной поверхностями перегородки.

Наконечник кислородно-конвертерной фурмы работает следующим образом.

Медный наконечник, например цельнолитой, в составе фурмы устанавливают на определенной высоте над уровнем чугуна в конвертере (на чертежах не показано) и подают воду (фиг.1, стрелка, направленная вниз), которая, ограниченная разделительной тарелкой 3 и соплами 2, поступает в центральную часть наконечника, где разделенная перегородкми 5 устремляется в зазор между соплами 2 и боковой частью нижней тарелки 4 и далее на выход (фиг.1, стрелка, направленная вверх). Таким образом, вода не расходуется, как обычно, на охлаждение центральной части нерабочей поверхности нижней тарелки фурмы, а, закручиваясь строго упорядоченным потоком (круговое движение воды по нерабочей поверхности нижней тарелки фурмы вдоль ее торцевой части строго в одном направлении), обеспечивает отбор и отвод тепла от медного наконечника. Одновременно через сопла 2 подается под давлением кислород и производится металлургический процесс передела чугуна на сталь с одновременным повышением температуры расплава (выше 1600°С) за счет экзотермических реакций, протекающих в расплаве.

Использование закрученного потока охлаждающей воды имеет ряд преимуществ по сравнению с обычной организацией ее течения:

а) закрутка потока способствует увеличению пристеночных скоростей охладителя, а следовательно, и коэффициента конвективной теплоотдачи;

б) вторичные движения, возникающие под действием центробежных сил, интенсифицируют теплообмен между относительно холодным ядром потока и пограничным слоем, контактирующим с теплонапряженной поверхностью;

в) организация упорядоченного макровихревого течения является эффективным методом борьбы с «застойными» зонами охладителя.

Дополнительное повышение стойкости наконечника за счет усиления охлаждения удается получить в случае, если кратчайшее расстояние между углом перегородки, образуемым пересечением внутренней и наружной поверхностей перегородки, до наружной поверхности ближайшего сопла составляет 0,5-1,5 от минимального расстояния между двумя соседними наружными поверхностями сопел на внутренней нерабочей поверхности нижней тарелки. При меньшем значении кратчайшего расстояния между углом перегородки, образуемым пересечением внутренней и наружной поверхностей перегородки, до наружной поверхности ближайшего сопла происходит снижение количества воды, которое перегородка сможет направить в застойные зоны между соплами и боковой частью нижней тарелки. При большем значении кратчайшего расстояния между углом перегородки, образуемым пересечением внутренней и наружной поверхностей перегородки, до наружной поверхности ближайшего сопла происходит увеличение потока воды между перегородкой и соплом и, как следствие, отсутствие закрученного потока охлаждающей воды, что ведет к ухудшению охлаждения и работоспособности внутренней поверхности нижней тарелки.

Экспериментально установлено, что для дальнейшего повышения стойкости наконечника высота перегородки должна составлять 0,1-1,0 от расстояния между внутренней поверхностью нижней тарелки и ближайшей к ней поверхностью разделительной тарелки вдоль высоты перегородки. При меньшем значении высоты перегородки снижается количество воды, которое перегородка сможет направить в застойные зоны между соплами и боковой частью нижней тарелки. При большем значении - выход перегородки за пределы разделительной тарелки, что невозможно конструктивно.

Установлено, что длина дуги примыкания каждой перегородки к наружной поверхности сопла составляет 0,1-0,6 от длины окружности наружной поверхности сопла в месте примыкания. При меньшем значении длины дуги примыкания каждой перегородки к наружной поверхности сопла будет образовываться застойная зона между соплом и перегородкой и, как следствие, перегрев и прогар в этом месте. При большем значении длины дуги примыкания каждой перегородки к наружной поверхности сопла происходит увеличение размеров перегородок, что ведет к ухудшению охлаждения и работоспособности внутренней поверхности нижней тарелки.

Использование изобретения значительно повышает стойкость наконечников от прогаров и износа кромок сопел, так как они более интенсивно охлаждаются упорядоченным потоком воды без образования застойных зон. Таким образом, конструктивные изменения позволяют значительно повысить надежность наконечников, стойкость которых будет зависеть в основном только от усталостной прочности их металла.

Похожие патенты RU2543628C2

название год авторы номер документа
НАКОНЕЧНИК КИСЛОРОДНО-КОНВЕРТЕРНОЙ ФУРМЫ 2022
  • Игонин Дмитрий Александрович
  • Мухин Иван Владимирович
RU2792000C1
НАКОНЕЧНИК КИСЛОРОДНО-КОНВЕРТЕРНОЙ ФУРМЫ 1998
  • Шатохин Игорь Михайлович
  • Кузьмин Александр Леонидович
RU2115745C1
НАКОНЕЧНИК КИСЛОРОДНО-КОНВЕРТЕРНОЙ ФУРМЫ 2003
  • Караник Ю.А.
RU2239661C1
Фурма для продувки металла 1990
  • Баптизманский Вадим Ипполитович
  • Лобачев Владислав Тимофеевич
  • Охотский Виктор Борисович
  • Зражевский Александр Данилович
  • Учитель Лев Михайлович
  • Шибко Александр Васильевич
  • Джусов Алексей Анатольевич
SU1765189A1
СПОСОБ ПРОДУВКИ МЕТАЛЛА В КОНВЕРТЕРЕ И ФУРМА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2000
  • Бюльгер С.Н.
  • Канаплин Л.Н.
  • Лятин А.Б.
  • Филатов М.В.
  • Шагалов А.Б.
RU2185447C2
Многосопловая фурма для продувки металла 1983
  • Чернятевич Анатолий Григорьевич
  • Баптизманский Вадим Ипполитович
  • Носов Константин Григорьевич
  • Борисов Юрий Николаевич
  • Шиш Юрий Иванович
  • Петров Сергей Николаевич
  • Гладилин Юрий Иванович
  • Тартаковский Анатолий Степанович
  • Махницкий Виктор Александрович
  • Старков Петр Андреевич
SU1116072A1
НАКОНЕЧНИК ГАЗОКИСЛОРОДНОЙ ФУРМЫ ДЛЯ ПРОДУВКИ РАСПЛАВА ОКИСЛИТЕЛЬНЫМ ГАЗОМ В КИСЛОРОДНОМ КОНВЕРТЕРЕ 2016
  • Афонин Олег Викторович
  • Проскурин Иван Анатольевич
RU2630730C9
НАКОНЕЧНИК ФУРМЫ 1992
  • Гревцев Леонид Михайлович[Ua]
  • Лапешин Владимир Николаевич[Ru]
  • Канаплин Леонид Николаевич[Ru]
  • Боровков Александр Николаевич[Ru]
RU2039089C1
ФУРМА ДЛЯ ПРОДУВКИ МЕТАЛЛА 2013
  • Токовой Олег Кириллович
  • Антонов Виталий Иванович
  • Хисамутдинов Николай Егорович
  • Ахметов Денис Владимирович
RU2533074C1
Многосопловый наконечник кислородной фурмы 1983
  • Клименко Вячеслав Дмитриевич
  • Тарпиньян Дмитрий Апелович
  • Еременко Сергей Сергеевич
  • Толчинская Любовь Леонидовна
  • Ларионов Александр Алексеевич
  • Проценко Борис Александрович
SU1615191A1

Иллюстрации к изобретению RU 2 543 628 C2

Реферат патента 2015 года НАКОНЕЧНИК КИСЛОРОДНО-КОНВЕРТЕРНОЙ ФУРМЫ

Изобретение относится к металлургии, в частности к конструкции наконечника кислородно-конвертерной фурмы. Наконечник содержит нижнюю тарелку с перегородками на ее внутренней нерабочей водоохлаждаемой поверхности, разделительную тарелку, верхнюю тарелку и сопла. Каждая перегородка выполнена примыкающей одной стороной к наружной поверхности сопла с образованием при пересечении наружной и внутренней поверхности перегородки угла, направленного в одну сторону по окружности. Длина примыкающей части каждой перегородки (lд) составляет 0,1-0,6 от длины окружности наружной поверхности сопла. Высота перегородки (h) составляет 0,1-1,0 от Н, где Η - расстояние между внутренней поверхностью нижней тарелки и ближайшей к ней поверхностью разделительной тарелки вдоль высоты перегородки. Использование изобретения обеспечивает повышение стойкости наконечника кислородно-конвертерной фурмы. 2 з.п. ф-лы, 3 ил.

Формула изобретения RU 2 543 628 C2

1. Наконечник кислородно-конвертерной фурмы, содержащий нижнюю тарелку с перегородками на ее внутренней нерабочей водоохлаждаемой поверхности, разделительную тарелку, верхнюю тарелку и сопла, отличающийся тем, что каждая перегородка выполнена примыкающей одной стороной к наружной поверхности сопла с образованием при пересечении наружной и внутренней поверхности перегородки угла, направленного в одну сторону по окружности, при этом длина примыкающей части каждой перегородки (lд) составляет 0,1-0,6 от длины окружности наружной поверхности сопла.

2. Наконечник по п. 1, отличающийся тем, что кратчайшее расстояние между углом перегородки, образуемым пересечением внутренней и наружной поверхностей перегородки, до наружной поверхности ближайшего сопла (bвых) составляет 0,5-1,5 от bвх, где bвх - минимальное расстояние между двумя соседними наружными поверхностями сопел на внутренней нерабочей поверхности нижней тарелки.

3. Наконечник по п. 1, отличающийся тем, что высота перегородки (h) составляет 0,1-1,0 от Н, где Η - расстояние между внутренней поверхностью нижней тарелки и ближайшей к ней поверхностью разделительной тарелки вдоль высоты перегородки.

Документы, цитированные в отчете о поиске Патент 2015 года RU2543628C2

НАКОНЕЧНИК КИСЛОРОДНО-КОНВЕРТЕРНОЙ ФУРМЫ 2003
  • Караник Ю.А.
RU2239661C1
НАКОНЕЧНИК КИСЛОРОДНО-КОНВЕРТЕРНОЙ ФУРМЫ 1998
  • Шатохин Игорь Михайлович
  • Кузьмин Александр Леонидович
RU2115745C1
RU 2051974 C1, 10.01.1996
Приспособление к резервуарам для нефти, мазута и т.п. жидкостей 1925
  • Скворцов Н.Ф.
SU7408A1
Токовихревой преобразователь 1975
  • Рогачев Виктор Игоревич
  • Сухоруков Василий Васильевич
  • Шкатов Петр Николаевич
SU563615A1

RU 2 543 628 C2

Авторы

Ветер Владимир Владимирович

Самойлов Михаил Иванович

Лихачев Геннадий Владимирович

Епифанова Ольга Геннадьевна

Даты

2015-03-10Публикация

2013-07-04Подача