Изобретение относится к области получения полимерных сорбентов с магнитными свойствами и может быть использовано для сбора (удаления) тяжелых металлов и радионуклидов в загрязненных средах, в том числе на сопредельных с авиаплощадками территориях.
Для очистки загрязненных вод от тяжелых металлов и радионуклидов в настоящее время широко используются различные сорбенты, основными характеристиками, которых должны являться:
- высокая удельная поверхность материала, увеличивающая его контакт с загрязняющим продуктом и обеспечивающая тем самым его эффективное поглощение;
- высокая комплексообразующая способность;
- невысокая цена продукта;
- биосовместимость с природными средами.
Известен сорбент с магнитными свойствами, полученный на основе хлорного железа, железных стружек и хромсодержащих промывных вод с соотношением ионов Cr(VI)/Fe(III) 1:1 (RU 2049544, 10.12.1995). Однако известный магнитный хромовый сорбент в основном предназначен для очистки сточных вод от ионов тяжелых металлов, не обладает механической прочностью.
Известен сорбент, обладающий хорошей плавучестью и высокой пористостью, что обеспечивает ему высокие сорбционные свойства, а также высокой механической прочностью. Этот сорбент содержит полимерную матрицу из высокомолекулярного полиэтилена, характеризующуюся значительной пористостью, а активную часть сорбента составляют природные алюмосиликаты (RU 2154526, 20.08.2000). Однако данный сорбент предназначен в основном для очистки водных сред от радионуклидов цезия и не обладает магнитными свойствами.
Известен сорбент в виде магнитной жидкости, полученной в виде стабилизированного солями жирных, нафтеновых или синтетических кислот магнетита (RU 2008145860, заявка от 20.11.2008), при этом варьируются растворы щелочей.
Известен сорбент в виде кристаллических осадков ферритов металлов, полученных при электрохимическом растворении железного анода. Железо, растворяясь, взаимодействует с примесями и при добавлении щелочи образует кристаллические осадки ферритов металлов. Способ очистки методом гальванокоагуляции предполагает действие короткозамкнутого гальванического элемента железо-кокс (медь). Железо, являясь анодом, переходит в раствор в виде магнетита, в структуру которого внедряются атомы металлов-примесей. Переменный контакт гальванопары между собой, кислородом воздуха и раствором обеспечивает эффект очистки ["Способ удаления тяжелых металлов из сточных вод" (Краткое сообщение. Серия XI. Охрана окружающей среды на предприятиях цветной металлургии №16, 30.08.79]. Для получения сорбента требуется высокий расход электроэнергии и, кроме того, для очистки требуется добавление реагента в виде щелочи.
Известен аналог сорбента на основе магнетита, полученного гальванокоагуляционным методом непосредственно в аппарате, для очистки растворов от ионов тяжелых цветных металлов, мышьяка, хрома, органических флотореагентов, нефтепродуктов, грубодисперсных и других примесей без ограничения исходных значений рН среды и концентраций удаляемых элементов [Гальванокоагуляционный метод очистки мышьяксодержащих растворов. Вдовкин Ю.Т., Феофанов В.А., Жданович А.П., Лукашен Б.С. Очистка сточных вод методом гальванокоагуляции: выпуск опубликованных работ Института "Казмеханобр", Алматы, 1991 г., стр. 23-28]. Недостатком описанного способа является невозможность регулирования сорбента применительно к различным видам сточных вод, поскольку циклы замыкания и размыкания составляющих гальванопары происходят произвольно. Кроме того, при длительной работе происходит пассивация гальванопары, что приводит к изменению свойств сорбента.
Известен сорбент на основе частиц естественного магнетита размером от 1 до 10 мкм в соотношении 10°С 12 г/литр и алюминиевых или аммонийных квасцов около 20 мг/литр для очистки воды для бытовых нужд [A.Priestley. Magnetic Separation News, 1983, v.i, p.5.]. Магнетит после четырехкаскадного перемешивания сорбирует загрязнители, эта смесь через флокулирующий магнит поступает в ванну осаждения, откуда чистая вода идет к потребителю, а из осадка с помощью трехкаскадных магнитных сепараторов магнетит регенерируется для повторного использования. Эта технологическая схема водоочистки многоступенчатая и очень сложная, потребляет около 100 кВт-час электроэнергии на 1 м3 воды и по времени длительная.
Известны магнитные адсорбенты на основе ферроцианида калия, растворимых солей железа или цинка [заявка на изобретение RU 94021786]. Сущность способа состоит в использовании природы дальнодействия адсорбционных сил, которые определяются взаимодействием со всеми ближайшими атомами (частицами) адсорбента. Следовательно, чем меньше размеры частиц (при одной и той же величине весовой твердой фазы), тем больше вероятность их коагуляции.
Близким к предлагаемому по технической сущности и достигаемому результату является сорбент на основе магнезиально-железистых шлаков цветной металлургии для очистки сточных вод от ионов тяжелых металлов путем их извлечения сорбентом [Зосин А.П. Гуревич Б.И. Милованова И.Б. О сорбционных свойствах шлакосиликата. В кн." Химия и технология силикатных материалов". Л. Наука, 1971, с. 100-105, А.П.Зосин, Т.И.Примак. Очистка промышленных стоков от катионов никеля, кобальта, меди, сорбентом на основе магнезиально-железистых шлаков цветной металлургии // Химия и технология неорганических сорбентов: Минвуз. Сб. науч. тр. Перм. политехн. ин-т. Пермь, 1980, с. 92-97]. По данному способу сорбцию ведут на шлакосиликатном сорбенте, который получен смешением порошка шлакового стекла с раствором силиката натрия с последующей гидротермальной обработкой суспензии при температуре 100°С. Очистка стоков от ионов никеля, меди, цинка осуществляется путем пропускания раствора через слой сорбента. Недостаток этого способа заключается в невысокой сорбционной емкости и прочности гранул сорбента.
Наиболее близким по технической сущности к заявленному изобретению является пористый гранулированный сорбент, включающий полимерную матрицу на основе гидроокиси железа и пористого гранулированного ионита (полистирольная, эпоксиполиамидная, винил пиридиновая матрица) (RU 94025664, 27.06.1996). Данный сорбент используется для извлечения токсических веществ из водных и газовых сред, например при извлечении уранил-иона, боратов из сточных вод и сероводорода из газовой смеси. Однако он не обладает необходимыми магнитными свойствами, механической прочностью и высокой сорбционной способностью.
Известен селективный неорганический сорбент на основе ферроцианидов переходных металлов меди, никеля, кобальта и пористого неорганического носителя (синтетический цеолит "А", ионообменные смолы, шабазит гексагональной структуры, природный цеолит моноклинной структуры) для очистки водных радиоактивных растворов от радионуклидов, в частности жидких радиоактивных отходов, содержащих радионуклиды цезия и стронция [патент РФ 2112289, МПК 6 G21F 9/04, B01J 20/02, C02F 9/00, 1998]. После стадий предочистки, включающих блоки механической очистки, ультрафильтрационный и микрофильтрационный блок, раствор жидких радиоактивных отходов пропускают через сорбент, проводят обработку отходов в обратноосмотическом модуле в одну или две стадии в зависимости от содержания солей и пермеат подвергают доочистке путем пропускания через сорбент. Недостатками известного сорбента являются непригодность его для очистки жидких радиоактивных отходов с высоким солевым фоном, сложность и многостадийность процесса, использование целого ряда селективных сорбентов, необходимость проведения специальной стадии предочистки жидких радиоактивных отходов от взвесей и нефтепродуктов, а также сосредоточение радионуклидов в жидком концентрате, объем которого составляет около 25% от объема исходного раствора жидких радиоактивных отходов и требует дальнейшей переработки.
Известен коллоидно-устойчивый наноразмерный сорбент на основе взятых в эквивалентном количестве катионов из группы переходных металлов и гексацианоферрат-анионов, являющихся прекурсорами формируемого сорбента, в среде стабильного карбоксилсодержащего полимерного коллоида (полиакриловая кислота, ее растворимые сополимеры и эмульсия сополимеров акриловой кислоты с размером частиц не более 500 нм) для радионуклидов (Патент РФ №2401469, МПК G21F 9/28 (2006.01) В82В 1/00 (2006.01) B01J 20/00 (2006.01) (заявка 008125922/06, от 25.06.2008, опубл. 15.08.1994), патентообл.: Институт химии Дальневосточного отделения Российской академии наук (статус государственного учреждения) (Институт химии ДВО РАН) (RU). Сорбент не обладает магнитными свойствами.
Наиболее близким по технической сущности к заявленному изобретению является композит на основе магнетита и гуминовых кислот, взятых в массовых соотношениях от 1:5 до 1:9, используемый для сорбции UO2 2+-ионов (А.А. Юрищева, К.А. Кыдралиева, М.А. Пукальчик, М.А. Тимофеев, А.А. Рахлеева, Д.Н. Маторин, В.А. Терехова. Нанокомпозиционный сорбент для очистки природных сред и его экотоксикологическая оценка / Экология и промышленность России, сентябрь 2011 г. ). Однако подобный композит имеет низкую намагниченность насыщения, связанную с избытком полимера, приводящим к снижению магнитных свойств.
Технической задачей заявленного изобретения является использование биосовместимых природных полимеров с высокой сорбционной емкостью по отношению к тяжелым металлам и радионуклидам, а также придание ему магнитных свойств с целью использования в процессах магнитной сепарации. Задачей изобретения также является разработка простого способа получения устойчивой магнито-реологической суспензии и обеспечение высокой степени очистки воды от радионуклидов и тяжелых металлов.
Данная техническая задача решается тем, что получают наноструктурированные магнитные композиционные сорбенты, включающие полимерную матрицу и магнитоактивные компоненты, введенные в различных массовых соотношениях Fe3O4-ГК: 4:1, 1:1, 1:4, в зависимости от требуемых магнитных и/или сорбционных характеристик. В качестве полимерной матрицы сорбент содержит природный биосовместимый полифункциональный полимер - гуминовые кислоты углей (ГК) с содержанием реакционноспособных карбоксильных (5 мг-экв/г) и фенольных (3,5 мг-экв/г) групп в составе их алифатической части, обуславливающих их высокую реакционную способность и высокую (до 1 ммоль/г) сорбционную емкость. Перспективность практического использования гуминовых веществ и их производных в качестве сорбентов определяется громадными ресурсами гумусосодержащих материалов, к которым относятся бурый уголь, торф, сапропель и др. В качестве магнитоактивных компонентов сорбент содержит наночастицы магнетита Fe3O4, размером от 7 до 30 нм. Регулирование размеров наночастиц магнетита проводилось варьированием условий проведения синтеза: изменение температуры синтеза от 20 до 70°C, скорости и типа перемешивания (магнитная или лопастная мешалка).
Магнитный сорбент по заявленному изобретению получают путем совмещения в одном технологическом процессе полимер-опосредованного синтеза наночастиц магнетита и стабилизации их роста, основанном на последовательном введении полимера в виде суспензии ГК в водно-щелочной (NH4OH) среде. При этом ГК выполняют роль стабилизаторов наночастиц, входя наряду с молекулами воды в состав сольватной оболочки коллоидных частиц оксидов железа. Вследствие высокого содержания реакционноспособных функциональных групп гуминовых кислот происходит стабилизация наночастиц магнетита, повышается его агрегативная устойчивость за счет реакций комплексообразования и формирования хелатных структур. Коллоидные частицы гидратированного оксида железа Fe3O4 обладают полимерной структурой, поэтому взаимодействие гуминовых кислот с коллоидными частицами Fe3O4 происходит за счет адсорбции макромолекул на межфазных границах. Органическая фаза захватывает металлочастицы в своеобразную «ловушку» - оксополимерную сетку или полимерное звено. В таких сетках расстояние между сетками и слоями, образованными природным полимером и оксидами железа, имеет нанометровые размеры. Более того, природный полимер обуславливает самоорганизацию формирующихся металлополимерных структур, включающую регуляцию размеров полимерных фрагментов на уровне наночастиц оксидов железа. Образующиеся коллоидные системы - агрегативно устойчивые, они разрушаются в условиях кислой среды (0.1 М HCl) в течение не менее 48 ч.
Таким образом, идея настоящего изобретения состоит в том, чтобы небольшую долю сорбционной емкости гуминовых веществ как макромолекулярных лигандов (менее 10%) использовать для связывания магнитных наночастиц и получить магнитоактивный сорбент. После сорбции детоксикантов таким гибридным магнитным нанокомпозитом образующийся конгломерат загрязнитель-сорбент из дезактивируемого объекта может быть удален методами магнитной сепарации. Кроме того, гуминовые вещества, с одной стороны могут выступать в качестве эффективных стабилизаторов для магнитоактивных наночастиц металлов, препятствуя росту их размеров, а с другой - практически сохранять свои протекторные свойства по отношению к экотоксикантам (ионам тяжелых металлов и радионуклидов).
Поставленная задача решается также механохимическим синтезом магнитных композиционных сорбентов путем одновременного диспергирования порошков предварительно синтезированных наночастиц магнетита и полученных солей гуминовых кислот в шаровой мельнице при различных технологических режимах (тип мельницы, соотношение компонентов, время и скорость диспергирования, количество, материал и вес шаров).
Приведенные ниже примеры иллюстрируют, но не ограничивают существо предлагаемого изобретения.
Пример 1. Синтез магнетита проводился при 40°C соосаждением водных растворов хлоридов железа (II) и (III) в присутствии щелочи (NH4OH) при соотношении растворов солей Fe3+/Fe2+=2:1 с тем, чтобы получить магнетит требуемого состава (31% FeO - вюстита и 69% γ-Fe2O3 - маггемита) при добавлении гуминовых кислот в реакционную систему из расчета массового соотношения между компонентами 1:4, 1:1, 4:1, соответственно. Образующийся в ходе реакции NH4Cl удалялся многократной промывкой дистиллированной водой до нейтрального pH. Образец сушился в вакууме в течение 2-3 часов.
Пример 2. То же, что и пример 1, но магнетит, полученный согласно описанной выше процедуре, и ГК или соль гуминовых кислот в виде гумата натрия в виде порошкообразной смеси при различных массовых соотношениях прекурсоров Fe3O4 и ГК: 1:4, 1:1, 4:1 были диспергированы в различных типах мельниц (Fritsch Pulverisette 5 и SPEX SamplePrep 8000М 230 Mixer/Mill). Механохимический синтез проводили в интервале от 1 до 60 минут. Размеры частиц синтезированного композита зависят от условий его получения (тип мельницы, время диспергирования, число оборотов, количество шаров, соотношение веса шаров к весу образца и др.) и содержания исходных компонентов.
Все полученные согласно изобретению магнитные композиционные сорбенты обладают высокой сорбционной способностью по отношению к тяжелым металлам, высокими магнитными характеристиками, которые обеспечивают возможность последующего сбора сорбента при помощи приспособлений, содержащих постоянные или электрические магниты. Значения коэрцитивной силы при температуре 300 К для исследуемых образцов составили от 3 до 15 Э. Увеличение концентрации гуминовых кислот в составе магнитных композиционных сорбентов до 50% практически не приводит к изменению коэрцитивной силы, в то время, как при массовом соотношении Fe3O4-ГК=1:4, наблюдается уменьшение коэрцитивной силы в несколько раз. Намагниченность насыщения полученных материалов лежит в диапазоне 14÷65 Гс. Максимальная сорбционная емкость сорбента для ионов Cd2+, Zn2+и Pb2 составляет 77, 85 и 96 мг/г, соответственно. Эффективность очистки природных водных сред от загрязнений зависит от вида загрязнений и составляет 97-100%. Для сбора загрязнений сорбент по изобретению добавляют в среду, загрязненную тяжелыми металлами и радионуклидами, выдерживают определенное время, необходимое и достаточное для сорбции загрязняющих продуктов, затем сорбент собирают с помощью магнитных приспособлений. В зависимости от концентрации полимерной матрицы и применяемого технологического оборудования, а также способа использования сорбента, последний может быть получен в виде разбавленных и концентрированных жидкостей, порошков.
название | год | авторы | номер документа |
---|---|---|---|
КОМПОЗИЦИОННЫЙ СОРБЕНТ С МАГНИТНЫМИ СВОЙСТВАМИ ДЛЯ РЕМЕДИАЦИИ ПОЧВ, ЗАГРЯЗНЕННЫХ МЫШЬЯКСОДЕРЖАЩИМИ СОЕДИНЕНИЯМИ | 2018 |
|
RU2676984C1 |
Способ получения магнитоуправляемого сорбционного материала | 2019 |
|
RU2744806C1 |
Способ получения магнитного композиционного сорбента для очистки сточных вод от ионов тяжелых металлов и нефтепродуктов | 2016 |
|
RU2626363C1 |
КОМПОЗИЦИЯ ДЛЯ ПОЛУЧЕНИЯ ФЕРРОМАГНИТНОГО ИОНООБМЕННИКА | 1994 |
|
RU2081846C1 |
УСТАНОВКА ДЛЯ ОЧИСТКИ ВОДНЫХ СРЕД ОТ МЫШЬЯКСОДЕРЖАЩИХ СОЕДИНЕНИЙ С ИСПОЛЬЗОВАНИЕМ МАГНИТОАКТИВНОГО СОРБЕНТА | 2019 |
|
RU2729787C1 |
Железо-магниевый композиционный состав для очистки сточных вод | 2022 |
|
RU2800460C1 |
Способ получения магнитного композиционного сорбента | 2022 |
|
RU2826365C2 |
СПОСОБ ПОЛУЧЕНИЯ ГРАФИТОВОГО СОРБЕНТА | 1998 |
|
RU2134155C1 |
СПОСОБ ПОЛУЧЕНИЯ МАГНИТНОГО КОМПОЗИТА НА ОСНОВЕ МАГНИТНОГО ОКСИДА ЖЕЛЕЗА И СЛОИСТОГО ДВОЙНОГО ГИДРОКСИДА | 2017 |
|
RU2678024C1 |
СПОСОБ ПОЛУЧЕНИЯ СОРБЕНТА НА ОСНОВЕ ТЕРМИЧЕСКИ РАСШИРЕННОГО ГРАФИТА И СОРБЕНТ | 2014 |
|
RU2564354C1 |
Изобретение относится к технологии получения магнитных сорбентов. Сорбент содержит полимерное связующее в виде гуминовых кислот и магнитный наполнитель-магнетит. Частицы магнетита имеют размер 7-30 нм. Массовое отношение магнетита к гуминовым кислотам составляет от 1:4 до 4:1. Полученный продукт обладает магнитными свойствами и повышенной сорбционной емкостью. Эффективность очистки природных водных сред от загрязнений полученным сорбентом зависит от вида загрязнений и составляет 97-100%. 2 н.п. ф-лы, 2 пр.
1. Магнитный композиционный сорбент для очистки загрязненных вод от тяжелых металлов и радионуклидов, включающий в качестве компонентов наночастицы магнетита Fe3O4, синтезированные в матрице природного полимерного связующего, в качестве которого использованы полифункциональные гуминовые кислоты, отличающийся тем, что массовое соотношение наночастиц магнетита и гуминовых кислот составляет от 1:4 до 4:1 в составе композита.
2. Способ получения магнитного композиционного сорбента, заключающийся в том, что к предварительно полученному магнетиту, имеющему размер частиц 7-30 нм, добавляют гуминовые кислоты или их соли из расчета массового отношения магнетита к гуминовым кислотам от 1:4 до 4:1, соответственно, и упомянутую смесь подвергают механохимическому воздействию в шаровой мельнице.
Авторы
Даты
2015-04-10—Публикация
2012-07-10—Подача