СПОСОБ ПОЛУЧЕНИЯ ОЛЕФИНОВ C-C ИЗ ДИМЕТИЛОВОГО ЭФИРА Российский патент 2015 года по МПК C07C1/20 C07C11/02 

Описание патента на изобретение RU2547838C2

Изобретение относится к области нефтехимии и, более конкретно, к каталитическому способу получения олефинов из диметилового эфира в условиях трехфазных процессов "газ - жидкость - твердое".

Для нефтехимической промышленности развитых стран увеличивается потребление олефинов C2-C4, связанное с быстрым ростом производства полимеров. Особенно быстрыми темпами растет потребление этилена и пропилена, что определяет прирост мирового и российского производства этих многотоннажных полупродуктов нефтехимии около 4-6% в год.

В последнее десятилетие ведущие исследовательские центры разрабатывают принципиально новые технологии, которые предусматривают производство олефинов на основе одноуглеродных молекул (природного газа-метана, окиси углерода, метанола). Эти реакции ведут в условиях газофазного катализа.

Основным недостатком газофазного получения олефинов является высокий тепловой эффект процесса. Так, выделение большого количества тепла в ходе реакционных процессов при проведении синтеза олефинов из диметилового эфира в условиях газофазного катализа негативно сказывается на выходе продуктов и является причиной снижения срока службы катализаторов вследствие его быстрой дезактивации. Для регулирования температуры процесса возникает необходимость рецикла большого количества газа, обогащенного азотом, использующимся в газофазном процессе в качестве разбавителя, а это, в свою очередь, связано с многостадийностью газофазного процесса и сложностью его аппаратурного оформления и, как следствие, высокими капитальными затратами.

Решение этих проблем возможно при осуществлении процесса в реакторе с трехфазным суспендированным слоем, так называемом процессе в сларри реакторе.

Трехфазные каталитические процессы типа "газ - жидкость - твердое" традиционно проводят в реакторах периодического действия, где реакция между газом и жидкостью протекает на суспендированных порошкообразных катализаторах при интенсивном перемешивании реакционной смеси /G.C. Bond, Heterogeneous Catalysis: Principles and Applications, Clarendon, Oxford, 1987/. Подобная организация процесса обусловлена необходимостью снижения негативного влияния внешней и внутренней диффузии реактантов на активность и селективность реакции.

Из уровня техники известен, например, одностадийный способ совместного получения диметилового эфира и метанола из синтез-газа, содержащего H2, CO и CO2, в котором синтез-газ контактирует со смесью медьсодержащего катализатора синтеза метанола и дегидратации метанола, выбранного из глинозема, алюмосиликата, цеолитов, твердых кислот, твердокислотных ионообменных смол и их смесей, суспендированных в инертной жидкости в трехфазной реакционной системе, описанный в патенте US 5218003, C07C 29/152, опубл. 08.06.1993, фирмы AIR PRODUCTS AND CHEMICALS, INC. (US). Согласно патенту максимальная производительность по диметиловому эфиру обеспечивается при обеспечении количества катализатора синтеза метанола в пределах от около 75 до около 90% от общей массы катализатора; если это количество составляет 95-99,9 мас.%, получают обогащенный метанолом продукт, содержащий диметиловый эфир.

Но в патентной литературе не найдены технические решения, описывающие получение олефинов, в том числе олефинов C2-C4 из диметилового эфира, в условиях трехфазного катализа.

Вместе с тем, проведение процесса получения олефинов C2-C4 из диметилового эфира именно в условиях трехфазного катализа обуславливает ряд преимуществ при его промышленной реализации.

Основными преимуществами данной технологии являются простота конструкции и более низкие капитальные затраты на строительство крупномасштабных реакторов, низкие энергозатраты, хороший контроль температуры, превосходный тепло- и массоперенос и высокая производительность процесса, более низкая загрузка катализатора для достижения требуемого выхода олефинов, повышение срока службы катализатора. Этот перечень и обуславливает интерес промышленности к разработкам в области получения олефинов C2-C4 из диметилового эфира в условиях трехфазного катализа.

Наиболее близким к предложенному способу по достигаемому результату является способ получения олефинов С24 в условиях газофазного катализа, описанный в патенте RU №2445158 C2, кл. B01J 21/04, B01J 23/02, B01J 29/40, C07C 1/20, опубл. 20.03.2012. Согласно этому способу осуществляют получение низших олефинов из диметилового эфира в смеси с инертным газом при повышенной температуре и атмосферном давлении в присутствии катализатора на основе цеолита типа пентасила с мольным отношением SiO2/Al2O3=37, содержащего не более 0,04 мас.% оксида натрия со связующим - оксидом алюминия, который дополнительно содержит магний, при следующем соотношении компонентов, мас.%: магний 0,1-2,0, оксид алюминия 33,0-34,0, цеолит типа пентасил с SiO2/Al2O3=37 и содержанием не более 0,04 мас.%, оксид натрия - остальное. Изобретение позволяет достичь конверсии диметилового эфира до 97 мас.%, селективности по C2-C3 олефинам до 82 мас.%, в том числе по C2-C3 приблизительно до 80 мас.%.

Недостатком процесса является недостаточно высокая производительность катализатора по выходу целевого продукта - олефинов C2-C4.

Задачей изобретения является разработка способа получения олефинов C2-C4 из диметилового эфира, проводимого в условиях трехфазного катализа и устраняющего недостатки газофазного процесса получения олефинов C2-C4 из диметилового эфира.

Для решения поставленной задачи предложен способ получения олефинов C2-C4 из диметилового эфира при повышенной температуре в присутствии катализатора, в котором катализатор предварительно измельчают механически, затем суспендируют в углеводородах, выкипающих при температуре выше 320°C, и диспергируют полученную суспензию ультразвуком до получения частиц катализатора размером не более 1 мкм, затем катализатор восстанавливают в токе гелия при температуре до 400°C и проводят синтез олефинов в условиях протока сырья, содержащего до 100% масс, диметилового эфира, через реактор типа сларри.

Реализация предложенного способа возможна в присутствии любого катализатора синтеза олефинов из диметилового эфира, например используют катализатор на основе цеолита типа пентасила, полученного модифицированием водородной формы цеолита ЦВМ водными растворами солей или родия в количестве 0,1% масс, или магния в количестве 1,0% масс, или их смеси с содержанием родия и магния 0,1 и 1,0% масс, соответственно.

В качестве углеводородов, выкипающих при температуре выше 320°C, используют тяжелый газойль каталитического крекинга или силиконовое масло типа Sylterm.

Технические результаты от использования предлагаемого технического решения заключаются в контроле температуры, улучшении теплопереноса, повышении производительности катализатора по выходу целевого продукта за счет получения ультрадисперсных частиц катализатора, что увеличивает количество активных центров, снижении дезактивации катализатора за счет смывки кокса растворителем, повышении скорости межфазного массопереноса при снижении капитальных затрат и энергозатрат.

Получение катализаторов

Цеолит, используемый для приготовления катализаторов, представляет собой отечественный аналог цеолита типа пентасил цеолит высокомодульный в аммонийной форме (NH4-ЦВМ) с мольным отношением SiO2/Al2O3=40 (ДК 04-21303-108-2007). Водородную форму цеолита (H-ЦВМ) с заданным остаточным содержанием в нем оксида натрия не более 0,07 мас.% получают прокаливанием NH4-ЦВМ в течение 4 ч при 500°C. Катализатор готовят путем модификации H-ЦВМ родием и магнием методом безостаточной пропитки цеолита водными растворами соответствующих солей металлов в количестве, обеспечивающем содержание металла в катализаторе 0,1 и 1,0 мас.% соответственно.

Для получения ультра- и нанодисперсных частиц катализатора полученные образцы измельчают механическим способом до получения фракции с крупностью частиц не более 12 мкм, затем дополнительно обрабатывают с использованием ультразвукового диспергатора.

Механическое измельчение проводят на шаровой вибрационно-механической мельнице тонкого помола КМ-1, снабженной яшмовой ступкой и яшмовым перетирающим шариком. Время истирания составляет 15 минут. С использованием специального сита выделяют фракцию каталитических частиц размером не более 12 мкм и проводят ее гранулометрический анализ на лазерном анализаторе "Analisette-22" COMPACT (фирма Fritsch).

Затем фракцию частиц не более 12 мкм для получения частиц размером не более 1 мкм суспендируют в тяжелом газойле каталитического крекинга (температура выкипания выше 320°C) или в силиконовом масле типа Sylterm (температура выкипания выше 320°C) и полученную суспензию подвергают дополнительной обработке с использованием ультразвукового диспергатора УЗД 2-0,1/22. Продолжительность ультразвуковой обработки составляет 5 минут. Средневзвешенный размер частиц катализатора измерен методом динамического светорассеивания на приборе N5 Submicron Particle Size Analyzer (фирма Beckman Coulter).

Пример 1

Введение магния в состав катализатора проводят методом безостаточной пропитки цеолита водным раствором соответствующей соли, обеспечивающим содержание Mg в катализаторе 1,0% масс. Для этого навеску цеолита заливают водным раствором, содержащим расчетное количество соли Mg, и выдерживают при комнатной температуре в течение не менее 24 часов при перемешивании. По истечении времени раствор выпаривают на водяной бане до состояния сухого порошка. Далее образец катализатора сушат при 100-110°C в течение не менее 6 часов, затем прокаливают при 500°C в течение 6 часов. Полученный порошок подвергают механическому истиранию на шаровой вибрационно-механической мельнице, после чего фракцию с крупностью частиц не более 12 мкм суспендируют в тяжелом газойле каталитического крекинга и загружают в автоклав для проведения реакции.

Получают катализатор с содержанием 1,0% масс Mg.

Пример 2

Катализатор готовят аналогично примеру 1, с той разницей, что полученную суспензию частиц катализатора в тяжелом газойле каталитического крекинга дополнительно обрабатывают на УЗД.

Получают катализатор с содержанием 1,0% масс Mg с размером частиц менее 1 мкм.

Пример 3

Катализатор готовят аналогично примеру 2, с той разницей, что вместо Mg в его состав вводят родий из водного раствора соответствующей соли методом безостаточной пропитки, обеспечивая содержание Rh в катализаторе 0,1% масс. Способы введения металла, сушки и прокалки катализатора аналогичны примеру 1. Методы механической и акустической обработки аналогичны примеру 2, но частицы катализатора суспендируют в силиконовом масле типа Sylterm.

Пример 4

Катализатор готовят аналогично примеру 2, с той разницей, что в состав катализатора дополнительно вводят Rh из водного раствора соответствующей соли методом безостаточной пропитки. Для этого навеску цеолита с Mg заливают водным раствором, содержащим расчетное количество соли Rh, и выдерживают при комнатной температуре в течение не менее 24 часов при перемешивании. По истечении времени раствор выпаривают на водяной бане до состояния сухого порошка. Далее образец сушат и прокаливают аналогично примеру 1. Методы механической и акустической обработки аналогичны примеру 2.

Получают катализатор с содержанием 1,0% мас. Mg и 0,1% мас. Rh.

Пример 5

Катализатор готовят аналогично примеру 3, с той разницей, что в состав катализатора дополнительно вводят Mg из водного раствора соответствующей соли методом безостаточной пропитки. Способы введения металлов, сушки и прокалки катализатора аналогичны примеру 1. Методы механической и акустической обработки аналогичны примеру 2.

Получают катализатор с содержанием 1,0% мас. Mg и 0,1 %мас. Rh.

Осуществление предлагаемого способа.

Нижеследующие примеры иллюстрируют проведение процесса получения олефинов C2-C4 из диметилового эфира в условиях трехфазного катализа.

Примеры 6-14

Синтез олефинов C2-C4 из диметилового эфира проводят при давлении не более 5 атм и температурах до 360°C в условиях протока диметилового эфира через сларри-реактор в проточном режиме в присутствии полученных катализаторов по примерам 1-5, подвергнутых предварительному восстановлению в среде гелия при температуре 400°C. Эффективное диспергирование катализатора в среде углеводородов, выкипающих при температуре выше 320°C, достигается за счет барботажа пузырьков диметилового эфира через слой жидкой фазы, а также за счет принудительного перемешивания суспензии механической мешалкой, совершающей возвратно-поступательные движения. В результате в объеме реактора создается однородная трехфазная система: газ - жидкость - мелкодисперсный катализатор.

При проведении эксперимента диметиловый эфир и азот, который используют ни как разбавитель, а в качестве стандарта для хроматографического расчета конверсии диметиловый эфир, в количестве до 10% масс, подают из баллона через регулятор скорости потока в реактор автоклавного типа, оборудованный встроенным перемешивающим устройством. Обогрев реактора осуществляют таким образом, что температура крышки реактора была на 50°C ниже температуры в зоне синтеза, что обеспечивает надежную конденсацию жидкой фазы и препятствует ее заметному уносу. Выходящий из реактора газ пропускают через три последовательно расположенных приемника-сепаратора, в котором конденсируются и отделяются жидкие продукты реакции.

Непрореагировавший диметиловый эфир и газообразные продукты реакции через газовые часы выбрасывают в линию сброса. На линии сброса газа предусмотрена возможность отбора пробы на хроматографический анализ.

Результаты синтеза олефинов C2-C4 из диметилового эфира в условиях трехфазного катализа приведены в табл.1.

Таблица 1 Результаты синтеза низших олефинов Пример №№ Катализатор по примеру T, °C W, ч-1 Конверсия, % П, г прод/г кат*час 6 1 320 1,5 87,0 69 0,9 7 2 320 3,0 66,7 75 1,5 8 2 300 3,0 47,1 85,0 1,2 9 2 340 3,0 82,0 65,0 1,6 10 3 320 3,0 60,6 77,0 1,4 11 3 340 3,0 72,5 69,0 1,5 12 4 320 3,0 45,9 80,0 1,1 13 4 340 3,0 53,3 75,0 1,2 14 5 320 3,0 70,9 80,0 1,7

Наибольшая производительность для газофазного процесса составляет не более 1 г прод/г кат*час. Как видно из таблицы, при применении катализатора, не подвергнутого ультразвуковой обработке (сравнительный пример 6), также не удается превысить это значение. Однако осуществление способа по изобретению позволяет достичь производительности до 1,7 г прод/г кат*час при высокой селективности по олефинам C2-C4, повышении срока службы катализатора и резком снижении капитальных затрат (за счет применения 100%-ного диметилового эфира, без разбавителей) по сравнению с газофазным способом получения олефинов.

Похожие патенты RU2547838C2

название год авторы номер документа
КАТАЛИЗАТОР И СПОСОБ СИНТЕЗА ОЛЕФИНОВ ИЗ ДИМЕТИЛОВОГО ЭФИРА В ЕГО ПРИСУТСТВИИ 2012
  • Хаджиев Саламбек Наибович
  • Колесниченко Наталия Васильевна
  • Хиврич Екатерина Николаевна
  • Батова Татьяна Игоревна
  • Колесникова Екатерина Евгеньевна
  • Кузьмина Наталья Игоревна
  • Широбокова Галина Николаевна
RU2518091C1
КАТАЛИЗАТОР И СПОСОБ ПОЛУЧЕНИЯ ОЛЕФИНОВ ИЗ ДИМЕТИЛОВОГО ЭФИРА В ЕГО ПРИСУТСТВИИ 2010
  • Хаджиев Саламбек Наибович
  • Колесниченко Наталия Васильевна
  • Горяинова Татьяна Игоревна
  • Бирюкова Екатерина Николаевна
  • Кулумбегов Руслан Владимирович
RU2445158C2
КАТАЛИЗАТОР И СПОСОБ ПОЛУЧЕНИЯ ВЫСОКООКТАНОВЫХ БЕНЗИНОВ С НИЗКИМ СОДЕРЖАНИЕМ БЕНЗОЛА И ДУРОЛА 2010
  • Тарасов Андрей Леонидович
  • Лищинер Иосиф Израилевич
  • Малова Ольга Васильевна
  • Беляев Андрей Юрьевич
  • Виленский Леонид Михайлович
RU2440189C1
КАТАЛИЗАТОР И СПОСОБ ПОЛУЧЕНИЯ ОЛЕФИНОВ ИЗ ДИМЕТИЛОВОГО ЭФИРА В ЕГО ПРИСУТСТВИИ 2006
  • Колесниченко Наталья Васильевна
  • Букина Зарета Муратовна
  • Яшина Ольга Владимировна
  • Завалишин Илья Николаевич
  • Маркова Наталья Анатольевна
  • Хаджиев Саламбек Наибович
  • Лин Галина Ивановна
  • Розовский Александр Яковлевич
  • Китаев Леонид Евгеньевич
RU2323777C1
КАТАЛИЗАТОР ПОЛУЧЕНИЯ ЖИДКИХ УГЛЕВОДОРОДОВ ИЗ ДИМЕТИЛОВОГО ЭФИРА (ВАРИАНТЫ) 2000
  • Малова О.В.
  • Лищинер И.И.
  • Долинский С.Э.
  • Плахотник В.А.
  • Кузьмичева А.Н.
  • Мортиков Е.С.
RU2160161C1
КАТАЛИЗАТОР И СПОСОБ ПОЛУЧЕНИЯ ОЛЕФИНОВ ИЗ ДИМЕТИЛОВОГО ЭФИРА В ЕГО ПРИСУТСТВИИ 2008
  • Колесниченко Наталья Васильевна
  • Хаджиев Саламбек Наибович
  • Бирюкова Екатерина Николаевна
  • Яшина Ольга Владимировна
  • Горяинова Татьяна Игоревна
  • Маркова Наталья Анатольевна
  • Кулумбегов Руслан Владимирович
RU2391135C1
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКООКТАНОВЫХ БЕНЗИНОВ 2005
  • Долинский Сергей Эрикович
  • Лищинер Иосиф Израилевич
  • Малова Ольга Васильевна
RU2284343C1
КАТАЛИЗАТОР, СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ И СПОСОБ ПОЛУЧЕНИЯ ЭКОЛОГИЧЕСКИ ЧИСТОГО ВЫСОКООКТАНОВОГО БЕНЗИНА 2003
  • Сливинский Е.В.
  • Колесниченко Н.В.
  • Маркова Н.А.
  • Букина З.М.
  • Розовский А.Я.
  • Лин Г.И.
  • Колбановский Ю.А.
  • Платэ Н.А.
RU2248341C1
КАТАЛИЗАТОР ДЛЯ ПРЕВРАЩЕНИЯ АЛИФАТИЧЕСКИХ УГЛЕВОДОРОДОВ C-C И/ИЛИ АЛИФАТИЧЕСКИХ КИСЛОРОДСОДЕРЖАЩИХ СОЕДИНЕНИЙ C-C, СПОСОБ ЕГО ПОЛУЧЕНИЯ И СПОСОБ ПОЛУЧЕНИЯ ВЫСОКООКТАНОВОГО БЕНЗИНА ИЛИ АРОМАТИЧЕСКИХ УГЛЕВОДОРОДОВ 2008
RU2372988C1
КАТАЛИЗАТОР И СПОСОБ ПОЛУЧЕНИЯ ЖИДКИХ УГЛЕВОДОРОДОВ ИЗ ДИМЕТИЛОВОГО ЭФИРА 1999
  • Байбурский В.Л.
  • Винц В.В.
  • Генкин В.Н.
  • Генкин М.В.
  • Лищинер И.И.
  • Малова О.В.
  • Мортиков Е.С.
  • Долинский С.Э.
RU2160160C1

Реферат патента 2015 года СПОСОБ ПОЛУЧЕНИЯ ОЛЕФИНОВ C-C ИЗ ДИМЕТИЛОВОГО ЭФИРА

Изобретение относится к способу получения олефинов C2-C4 из диметилового эфира при повышенной температуре в присутствии катализатора. При этом катализатор предварительно измельчают механически, затем суспендируют в углеводородах, выкипающих при температуре выше 320°C, и диспергируют полученную суспензию ультразвуком до получения частиц катализатора размером не более 1 мкм, затем катализатор восстанавливают в токе гелия при температуре до 400°С и проводят синтез олефинов в условиях протока сырья, содержащего до 100 мас.% диметилового эфира, через реактор типа сларри. Предлагаемый способ обладает высокой производительностью катализатора по выходу целевого продукта. 2 з.п. ф-лы, 14 пр., 1 табл.

Формула изобретения RU 2 547 838 C2

1. Способ получения олефинов C2-C4 из диметилового эфира при повышенной температуре в присутствии катализатора, отличающийся тем, что катализатор предварительно измельчают механически, затем суспендируют в углеводородах, выкипающих при температуре выше 320°C, и диспергируют полученную суспензию ультразвуком до получения частиц катализатора размером не более 1 мкм, затем катализатор восстанавливают в токе гелия при температуре до 400°С и проводят синтез олефинов в условиях протока сырья, содержащего до 100 мас.% диметилового эфира, через реактор типа сларри.

2. Способ получения олефинов C2-C4 по п.1, отличающийся тем, что используют любой катализатор синтеза олефинов C2-C4 из диметилового эфира, например, на основе цеолита типа пентасила, полученного модифицированием водородной формы цеолита ЦВМ водными растворами солей или родия в количестве 0,1 мас.%, или магния в количестве 1,0 мас.%, или их смеси с содержанием родия и магния 0,1 и 1,0 мас.% соответственно.

3. Способ получения олефинов C2-C4 по п.1, отличающийся тем, что в качестве углеводородов, выкипающих при температуре выше 320°C, используют тяжелый газойль каталитического крекинга или силиконовое масло типа Sylterm.

Документы, цитированные в отчете о поиске Патент 2015 года RU2547838C2

КАТАЛИЗАТОР И СПОСОБ ПОЛУЧЕНИЯ ОЛЕФИНОВ ИЗ ДИМЕТИЛОВОГО ЭФИРА В ЕГО ПРИСУТСТВИИ 2010
  • Хаджиев Саламбек Наибович
  • Колесниченко Наталия Васильевна
  • Горяинова Татьяна Игоревна
  • Бирюкова Екатерина Николаевна
  • Кулумбегов Руслан Владимирович
RU2445158C2
Двухкамерный секциональный паровой котел с раздвинутыми пучками параллельных или непараллельных труб 1925
  • А. Шпейер
SU2261A1
Станок для набирания на пластинки обувной фурнитуры 1927
  • Варшавский М.Н.
SU10038A1
WO 2013098271 A1, 04.07.2013

RU 2 547 838 C2

Авторы

Хаджиев Саламбек Наибович

Колесниченко Наталия Васильевна

Ежова Наталия Николаевна

Коростелева Ирина Геннадьевна

Яшина Ольга Владимировна

Хиврич Екатерина Николаевна

Даты

2015-04-10Публикация

2013-08-14Подача