Изобретение относится к области испытаний материалов, в частности к испытаниям на коррозионную стойкость и водородостойкость циркониевых сплавов, разрабатываемых и используемых в качестве материалов элементов активной зоны легководных ядерных реакторов, в условиях, приближенных к реакторным. Изобретение может быть использовано для дореакторных испытаний циркониевых сплавов и для исследования процессов их взаимодействия с пароводяной средой в активной зоне легководного реактора, включая изучение захвата ионов водорода различных энергий и доз облучения в циркониевые сплавы в пароводяной среде при повышенной температуре и влияния ионного облучения на коррозию циркониевых сплавов в данной среде.
Известен способ коррозионно-термических испытаний длинномерных нефрагментированных ТВЭЛов, в том числе с оболочками из циркониевых сплавов (SU 1783383 A1, G01N 17/00, G01N 3/18), в котором участки испытуемого ТВЭЛа, помещенного в кварцевую камеру, подвергают воздействию нагрева, воды и водяного пара под давлением.
Данный способ характеризуется крайне низкой производительностью испытаний в связи с необходимостью последовательного проведения испытаний каждого ТВЭЛа в отдельности и невозможностью одновременного испытания образцов различных циркониевых сплавов. Кроме того, способ характеризуется неоправданно большим расходом дорогостоящих материалов ТВЭЛов.
Наиболее близким к изобретению является способ определения коррозионной стойкости циркониевых сплавов для ядерных реакторов (JPH 01250736 A, G01N 17/00, G21C 17/06). Способ заключается в нагреве и выдержке образцов из циркониевых сплавов в пароводяной среде в различных температурных режимах: при температуре в диапазоне 300-400°C - температурном диапазоне активной зоны легководного ядерного реактора; при температуре в диапазоне 490-530°C для ускоренного определения склонности циркониевого сплава к нодулярной коррозии.
Общим недостатком обоих способов-аналогов является то, что они не позволяют достаточно полно моделировать процессы воздействия агрессивной среды на циркониевые сплавы в активной зоне реактора, поскольку не включают в себя воздействие на циркониевые сплавы ионов водорода, которое происходит в процессе работы реактора за счет частиц, рождающихся в результате радиолиза воды.
Данный недостаток существенно уменьшает возможность использования получаемой данным способом информации для выработки заключений о поведении исследуемых циркониевых сплавов в активной зоне легководного реактора в процессе его работы.
Техническим результатом изобретения является приближение условий испытаний образцов циркониевых сплавов в пароводяной среде к условиям активной зоны легководного реактора, что позволяет повысить достоверность прогнозируемой картины поведения исследуемых циркониевых сплавов в активной зоне легководного реактора в процессе его работы, составленной на основе результатов данных испытаний.
Технический результат достигается тем, что в предлагаемом способе, включающем в себя выдержку образцов циркониевых сплавов в пароводяной среде в температурном диапазоне активной зоны легководного реактора, согласно изобретению, в процессе выдержки образцов в пароводяной среде создают газоразрядную плазму в парах воды, после чего облучают образованными при этом положительно заряженными ионами водорода образцы путем подачи на них отрицательного электрического потенциала относительно плазмы.
В частном случае, для обеспечения возможности равномерного по поверхности и контролируемого по интенсивности облучения образцов ионами водорода образцы облучают положительно заряженными ионами водорода плазмы тлеющего разряда в парах воды. В режиме диффузного горения тлеющий разряд позволяет получить равномерно распределенную плотность тока положительных ионов по поверхности электрода, находящегося под отрицательным электрическим потенциалом относительно плазмы.
В частном случае облучения образцов положительно заряженными ионами водорода плазмы тлеющего разряда в парах воды для обеспечения стабильного диффузного горения тлеющего разряда в процессе облучения образцов в пароводяной среде создают турбулентные потоки пара. Создание турбулентного потока пара в области разряда приводит к интенсификации конвективного теплообмена, что позволяет предотвратить развитие тепловых неустойчивостей в плазме и за счет этого исключить возможность возникновения искровых пробоев, превращающих процесс облучения в неконтролируемый.
Пример конкретной реализации способа
На фиг.1 представлена схема устройства для реализации предлагаемого способа, где 1 - испытательная камера, 2 - бойлер с водой, 3 - перегреватель пара, 4 - конденсатор пара, 5 - исследуемые образцы циркониевых сплавов, 6 - анод, 7 - термопарный датчик температуры.
Способ реализуется следующим образом. Образцы 5 сплава Э110 помещают в испытательную камеру 1. В бойлере 2 нагревают воду до температуры кипения. Пар при температуре 100°С поступает в испытательную камеру 1. В испытательной камере 1 пар нагревают до температуры 400°C с помощью перегревателя пара 3. Температуру пара в испытательной камере 1 контролируют с помощью термопарного датчика 7. Давление пара в испытательной камере 1 близко к атмосферному. Между образцами 5, являющимися катодами, и анодом 6, расположенными на расстоянии 0.5 см друг от друга, подают разность потенциалов, равную 15 кВ. В результате происходит пробой газового промежутка между ними и образование в нем плазмы тлеющего разряда в парах воды. Образцы 5, являясь катодами, находятся под отрицательным потенциалом относительно плазмы и облучаются положительно заряженными ионами водорода. Ток разряда ~7-8 мА, плотность потока ионов на образцы ~2×1016 см-2 сек-1. За время облучения 15 мин набирается доза облучения, равная 1.7×1019 см-2, что соответствует расчетной дозе облучения быстрыми протонами деталей в активной зоне легководного реактора при флюенсе нейтронов 1022 см-2. Перегретый пар, проходя через испытательную камеру 1, попадает в конденсатор пара 4 - участок трубопровода, охлаждаемый водой. В конденсаторе пара 4 пар охлаждается, конденсируется и образовавшаяся вода стекает обратно в бойлер, замыкая тем самым пароводяной цикл.
Таким образом, из вышеуказанного следует, что предлагаемый способ позволяет приблизить условия испытаний образцов циркониевых сплавов в пароводяной среде к условиям активной зоны легководного реактора, поскольку включает в себя облучение циркониевых сплавов ионами водорода, которое происходит в процессе работы реактора за счет частиц, рождающихся в результате радиолиза воды. Тем самым, использование данного способа позволяет повысить достоверность прогнозируемой картины поведения исследуемых циркониевых сплавов в активной зоне легководного реактора в процессе его работы, составленной на основе результатов внереакторных испытаний.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ АНТИКОРРОЗИОННОЙ ЗАЩИТЫ ИЗДЕЛИЙ ИЗ ЦИРКОНИЯ И ЕГО СПЛАВОВ | 2008 |
|
RU2382120C1 |
СПОСОБ РЕГУЛИРОВАНИЯ КАЧЕСТВА ТЕПЛОНОСИТЕЛЯ КИПЯЩИХ РЕАКТОРОВ | 1996 |
|
RU2107956C1 |
СПОСОБ ИСПЫТАНИЯ НА СОВМЕСТИМОСТЬ ПОРОШКА ЯДЕРНОГО ТОПЛИВА С МАТЕРИАЛОМ ОБОЛОЧКИ ТВЭЛА | 2015 |
|
RU2581846C1 |
СПОСОБ НАНЕСЕНИЯ НА МЕТАЛЛИЧЕСКУЮ ДЕТАЛЬ КОМПЛЕКСНОГО ПОКРЫТИЯ ДЛЯ ЗАЩИТЫ ДЕТАЛИ ОТ ВОДОРОДНОЙ КОРРОЗИИ, СОСТОЯЩЕГО ИЗ МНОЖЕСТВА МИКРОСЛОЕВ | 2012 |
|
RU2495154C2 |
Способ плазмохимической обработки жидкого сырья органического и/или растительного происхождения и устройство для его реализации | 2017 |
|
RU2665418C1 |
СПОСОБ ПОЛУЧЕНИЯ ПРОБ ПРОДУКТОВ ОТЛОЖЕНИЙ С ПОВЕРХНОСТИ ОБОЛОЧЕК ЦИРКОНИЕВЫХ ТВЭЛОВ ДЛЯ ПРОВЕДЕНИЯ КОЛИЧЕСТВЕННОГО АНАЛИЗА | 2004 |
|
RU2263161C1 |
МЕТАЛЛИЧЕСКОЕ ТОПЛИВО В ВИДЕ ЧАСТИЦ, ИСПОЛЬЗУЕМОЕ ДЛЯ ВЫРАБОТКИ ЭЛЕКТРОЭНЕРГИИ, СИСТЕМЫ ПЕРЕРАБОТКИ, А ТАКЖЕ НЕБОЛЬШИЕ МОДУЛЬНЫЕ РЕАКТОРЫ | 2010 |
|
RU2538952C2 |
СОРБИРУЮЩАЯ КОМПОЗИЦИЯ ДЛЯ ОЧИСТКИ ВОДЫ ХРАНИЛИЩ ОТРАБОТАННОГО ЯДЕРНОГО ТОПЛИВА | 1995 |
|
RU2086018C1 |
КЕРАМИЧЕСКОЕ ЯДЕРНОЕ ТОПЛИВО, ДИСПЕРГИРОВАННОЕ В МАТРИЦЕ ИЗ МЕТАЛЛИЧЕСКОГО СПЛАВА | 2015 |
|
RU2684645C2 |
СПОСОБ ОБРАБОТКИ ЦИРКОНИЕВЫХ СПЛАВОВ | 2000 |
|
RU2199607C2 |
Изобретение относится к области испытаний материалов, в частности, к испытаниям на коррозионную стойкость и водородостойкость циркониевых сплавов, разрабатываемых и используемых в качестве материалов элементов активной зоны легководных ядерных реакторов, в условиях, приближенных к реакторным. В заявленном способе в процессе выдержки образцов циркониевых сплавов в пароводяной среде в температурном диапазоне активной зоны легководного реактора создают газоразрядную плазму в парах воды, после чего облучают образованными при этом положительно заряженными ионами водорода образцы путем подачи на них отрицательного электрического потенциала относительно плазмы. Техническим результатом является приближение условий испытаний образцов циркониевых сплавов в пароводяной среде к условиям активной зоны легководного реактора, что позволяет повысить достоверность прогнозируемой картины поведения исследуемых циркониевых сплавов в активной зоне легководного реактора в процессе его работы, составленной на основе результатов данных испытаний. 2 з.п. ф-лы, 1 ил.
1. Способ испытаний циркониевых сплавов в пароводяной среде, включающий в себя выдержку образцов циркониевых сплавов в пароводяной среде в температурном диапазоне активной зоны легководного реактора, отличающийся тем, что в процессе выдержки образцов в пароводяной среде создают газоразрядную плазму в парах воды, после чего облучают образованными при этом положительно заряженными ионами водорода образцы путем подачи на них отрицательного электрического потенциала относительно плазмы.
2. Способ по п.1, отличающийся тем, что образцы облучают положительно заряженными ионами водорода плазмы тлеющего разряда в парах воды.
3. Способ по п.2, отличающийся тем, что в процессе облучения образцов положительно заряженными ионами водорода плазмы тлеющего разряда в пароводяной среде создают турбулентные потоки пара.
Воздушный колпак гидротарана | 1984 |
|
SU1250736A1 |
СПОСОБ ОПРЕДЕЛЕНИЯ СКЛОННОСТИ ЦИРКОНИЕВЫХ СПЛАВОВ К НОДУЛЬНОЙ КОРРОЗИИ | 1990 |
|
RU2036465C1 |
Способ определения коррозионной стойкости циркония и его сплавов | 1988 |
|
SU1578607A1 |
Способ коррозионно-термических испытаний | 1990 |
|
SU1783383A1 |
Авторы
Даты
2015-05-10—Публикация
2014-02-07—Подача