ПРОИЗВОДНОЕ ГИАЛУРОНОВОЙ КИСЛОТЫ, СПОСОБ ЕГО ПОЛУЧЕНИЯ И СПОСОБ ЕГО МОДИФИКАЦИИ Российский патент 2015 года по МПК C08B37/00 

Описание патента на изобретение RU2550602C2

Область техники

Изобретение относится к способу получения нового производного гиалуроновой кислоты, содержащего альдегидную группу -СН=O вместо первичной гидроксигруппы -СН2-ОН. Окисление можно осуществлять под воздействием периодинана Десса-Мартина (DMP) в полярных апротонных растворителях,

DMP - периодинан Десса-Мартина,

где растворителем может служить, например, диметилсульфоксид.

Предпосылки создания изобретения

Гиалуроновая кислота представляет собой важный полисахарид, состоящий из двух повторяющихся звеньев - (1,3)-D-глюкуроновой кислоты и β-(1,4)-N-ацетил-D-глюкозамина. Его молярная масса находится в интервале 5,104-5,106 г-моль-1, в зависимости от исходного материала и от способа выделения продукта. Гиалуроновая кислота или ее натриевая соль - гиалуронан - важный компонент соединительной ткани и синовиальной жидкости суставов, она играет важную роль в таких биологических процессах, как гидратация, организация протеогликанов, а также клеточная дифференциация, пролиферация и ангиогенез. Гиалуроновая кислота - достаточно гидрофильный полисахарид, растворимый в воде в виде солей во всем интервале рН.

Окисление гиалуроновой кислоты

Окисление полисахаридов - процесс, сопровождающийся изменением степени окисления функциональных групп полисахарида. Как правило, образуются карбоновые кислоты или альдегиды, что может привести к резкому изменению свойств полисахарида. В большинстве случаев в реакции используют реагенты, содержащие атомы в высших степенях окисления.

Окисление проводили согласно способу селективного окисления сахаридов по первичной гидроксильной группе, описанному в работе Angelino, European Journal of Organic Chemistry, 2006, 19, 4323-4326, с помощью системы 2,2,6,6-тетраметил-1-пиперидиноксильного радикала TEMPO и трихлоризоциануровой кислоты ТСС в ДМФА при температуре 0°С, при этом в качестве основного продукта был получен соответствующий альдегид.

Окисление циклодекстрина до моноальдегида описано в работе Comwell, Tetrahedron Letters 1995, 36 (46), 8371-8374. Окисление проводили прибавлением окислителя - периодинана Десса-Мартина (DMP) в ДМСО или ДМФА при температуре 20°С.

Окисление первичной гидроксигруппы гиалуронана до карбоновой кислоты под воздействием 2,2,6,6-тетраметил-1-пиперидиноксильного радикала (TEMPO) и NaOCl проводили при рН 10,2 и при температуре 0°С (схема 2) (Carbohydr Res 2000,327 (4), 455-61).

Аналогично другим полисахаридам, наблюдались высокая региоселективность и незначительное разложение полимера. При повышении концентрации соли (NaBr, NaCl, Na2SO4) в растворе скорость окисления несколько снижалась.

Окисление гиалуронана под воздействием системы TEMPO/NaClO было описано в патентной заявке WO 02/18448 А2. Авторы также исследовали взаимодействие полностью карбоксилированных полисахаридов при образовании биологических комплексов.

Скорость окисления ГК и других полисахаридов под воздействием периодата натрия исследована в работе Scott et al. (схема 3) (Histochemie 1969, 19 (2), 155-61). Изучалось количественное влияние таких факторов, как длина цепи, природа заместителей, конфигурация полимера и температура. Применение NaIO4 для окисления гиалуронана раскрыто также в патентах №№US 6 683 064 и US 6 953 784.

Изучены модельные реакции низкомолекулярных аналогов ГК в физиологическом буфере (Carbohydr Res 1999, 321, (3-4), 228-34). Продукты окисления глюкуронового и глюкозаминного фрагментов анализировали методом хромато-масс-спектрометрии. Результаты также позволяют предположить, что окисление идет в основном по глюкуроновому фрагменту, причем в качестве основного продукта образуется мезовинная кислота, которая может служить биомаркером окисления гиалуронана.

3.4.2. Применение окисленной ГК в реакциях сшивки

Применение окисленной ГК для получения сетчатых гидрогелей описано в работе Weng et al. (схема 4), J Biomed Mater Res A 2008, 85 (2), 352-65. В данном случае в реакцию вводили два исходных реагента - частично окисленный гиалуронан и желатин:

Физико-химические свойства полученных гидрогелей исследовали инструментальными методами - Фурье-ИК-спектроскопии, сканирующей электронной микроскопии (СЭМ) и реометрии. При повышении степени замещения в гиалуронане наблюдалось соответствующее увеличение совместимости гидрогелей и снижение водопоглощающей способности. Исследование взаимодействия гидрогеля с клетками проводили с дермальными фибробластами. По данным анализа долгосрочной жизнеспособности клеток, как гидрогели, так и продукты их деградации были биосовместимы. При культивировании с клетками гидрогель разлагался в течение 4 недель с очевидной потерей целостности. Хорошая биосовместимость и биоразлагаемость были далее подтверждены в опытах на мышах при подкожной имплантации. Наконец, депонирование внеклеточного матрикса в гидрогелях in vitro и in vivo было показано методом СЭМ.

Способ получения сшитой ГК из окисленного гиалуронана и желатина методом обратной эмульсии, при котором трехмерный гидрогель получался в отсутствие добавок сшивающего агента, был описан в работе Weng et al., Biomaterials 2008, 29, (31), 4149-56. В указанной публикации методом ВЭЖХ изучали включение модельных лекарственных препаратов в структуру гидрогеля (инкапсулирование) и их высвобождение под воздействием макрофагов.

Получение эластичных гидрогелей сочетанием ГК, окисленной до ГК-альдегида под воздействием периодата натрия, и ГК, модифицированной дигидразидом адипиновой кислоты, было описано в работе Sahiner et al. (схема 5), J. Biomater. Sci. Polym. Ed 2008, 19 (2), 223-43.

По данным МТТ-теста, полученные производные не оказывали видимого воздействия на пролиферацию культивированных фибробластов.

Раскрытие изобретения

Настоящее изобретение относится к способу селективного окисления первичной гидроксигруппы гиалуроновой кислоты в положении 6 глюкозаминного фрагмента полисахарида до альдегидной группы. Реакцию проводят в апротонной среде под воздействием окислителя - периодинана Десса-Мартина (DMP). Предлагаемая методика отличается тем, что альдегидная группа при этом вводится в положение 6 глюкозаминного фрагмента гиалуронана (схема 6, структура 3). В ранее опубликованных методах вводилась либо альдегидная группа в положения 2 и 3 глюкуронового фрагмента гиалуронана с раскрытием сахаридного цикла (схема 6, структура 2), либо карбоксильная группа в положение 6 глюкозаминного фрагмента гиалуронана (схема 6, структура 1).

Преимущество способа согласно настоящему изобретению состоит в том, что в соответствующем продукте окисления (структура 3, схема 6) сохраняется строение сопряженных циклов сахаридов. Раскрытие цикла в продукте окисления до диальдегида (структура 2, схема 6) приводит к нарушению линейности цепи и, следовательно, к существенному изменению трехмерной структуры полисахарида по сравнению с немодифицированным гиалуронаном. Несмотря на то что в продукте окисления до карбоновой кислоты (структура 1, схема 6) разрыва линейности цепи не происходит, карбоксильная группа не обеспечивает столь разнообразных возможностей дальнейшей модификации (связывания), как альдегидная группа. Так как карбоксильная группа уже имеется в составе немодифицированного полисахарида, окисление до структуры 1 (схема 6) приводит только к повышению полярности полисахарида, а не придает ему новое свойство, применимое для связывание новых заместителей.

Известно, что альдегидная группа, связанная с алкильной группой, находится в воде в форме так называемого геминального диола ГК-СН(ОН)2, который взаимодействует с нуклеофилами аналогично альдегидам. По данным ЯМР спектроскопии, более 95% гиалуронана, окисленного по положению 6 глюкозаминного фрагмента (продукт 3, схема 6), в водных растворах представляет собой геминальный диол.

Согласно способу настоящего изобретения, гиалуроновую кислоту растворяют в полярных апротонных растворителях, например в ДМСО, затем прибавляют окислитель и далее реакционную смесь перемешивают при температуре от 10 до 50°С, предпочтительно при 20°С, в течение не менее 5 минут, предпочтительно от 1 до 150 часов, более предпочтительно хотя бы 10 часов.

Полученный окисленный гиалуронан может вступать в реакции связывания с другими веществами, например, содержащими аминогруппу. Связывание может приводить к образованию либо иминной формы, либо - после восстановления - аминной формы (восстановительное аминирование) (схема 7):

Обе части указанной модификации проводят в водном растворе, восстановление идет под воздействием NaBF3CN. Обе реакции, приведенные на схеме 7, можно провести в одну стадию.

Модификация производного гиалуроновой кислоты осуществляется при реакции окисленного производного с амином общей формулы H2N-R либо с гиалуронаном, замещенным группой -R-NH2, в которой R - алкил с линейной или разветвленной цепью C130, не обязательно содержащий ароматические или гетероароматические группы. Данный амин может представлять собой алкиламин, например бутиламин или гександиамин, аминокислоту, пептид или полисахарид, содержащий свободную аминогруппу. В случае применения диамина или соединений, содержащих три или более аминогруппы, возможно получение сетчатых производных гиалуронана. Сетчатые производные образуются также при взаимодействии альдегида с гиалуронаном, замещенным аминоалкильной группой ГК-алкил-NH2.

Подробное описание изобретения

DS=степень замещения = 100% × число молей введенного заместителя/число молей димеров полисахарида.

Термин «эквивалент (экв.)» в настоящем документе относится к димеру гиалуроновой кислоты, если не указано иное. Процентные доли в настоящем документе соответствуют массовым процентам, если не указано иное.

Молекулярную массу исходного гиалуронана (источник: CPN spol. s r.o., Dolni Dobrouc, CZ) определяли методом SEC-MALLS.

Пример 1 - Окисление гиалуроновой кислоты под воздействием DMP

К 1%-ному раствору гиалуроновой кислоты (0,1 г, 20 кДа) в ДМСО прибавляли раствор DMP (0,2 экв.) в ДМСО (1 мл). Смесь перемешивали в течение 24 часов при температуре 20°С. Далее раствор разбавляли до концентрации 0,1% и диализовали против смеси (0,1% NaCl, 0,1% NaHCO3), 3×5 литров (один раз в сутки) и против дистиллированной воды, 7×5 литров (дважды в сутки).

Полученный раствор упаривали и анализировали.

DS 10% (по данным спектроскопии ЯМР)

Спектр ПМР (D2O) δ 5,26 м.д. (с, 1Н, полимер-CH(ОН)2) HSQC (D2O) кросс-пик 5,26 м.д. (1Н) - 90 м.д. (13С) (полимер-CH(ОН)2) Фурье-ИК-спектр (KBr) 1740 см-1 -СН=O

Пример 2 - Окисление гиалуроновой кислоты под воздействием DMP

К 0,5%-ному раствору натриевой соли гиалуроновой кислоты (0,1 г, 600 кДа) в ДМСО прибавляли раствор DMP (0,2 экв.) в ДМСО (1 мл). Смесь перемешивали в течение 24 часов при температуре 20°С. Далее раствор разбавляли до концентрации 0,1% и диализовали против смеси (0,1% NaCl, 0,1% NaHCO3), 3×5 литров (один раз в сутки) и против дистиллированной воды, 7×5 литров (дважды в сутки). Полученный раствор упаривали и анализировали. DS 10% (по данным спектроскопии ЯМР, более подробно см. в Примере 1).

Пример 3 - Окисление гиалуроновой кислоты под воздействием DMP

К 1%-ному раствору гиалуроновой кислоты (0,1 г, 20 кДа) в ДМСО прибавляли раствор DMP (1 экв.) в ДМСО (1 мл). Смесь перемешивали в течение 24 часов при температуре 20°С. Далее раствор разбавляли до концентрации 0,1% и диализовали против смеси (0,1% NaCl, 0,1% NaHCO3), 3×5 литров (один раз в сутки), и против дистиллированной воды, 7×5 литров (дважды в сутки). Полученный раствор упаривали и анализировали.

DS 50% (по данным спектроскопии ЯМР, более подробно см. в Примере 1).

Пример 4 - Окисление гиалуроновой кислоты под воздействием DMP.

К 1%-ному раствору гиалуроновой кислоты (0,1 г, 20 кДа) в ДМСО прибавляли раствор DMP (1 экв.) в ДМСО (1 мл). Смесь перемешивали в течение 1 часа при температуре 20°С. Далее раствор разбавляли до концентрации 0,1% и диализовали против смеси (0,1% NaCl, 0,1% NaHCO3), 3×5 литров (один раз в сутки) и против дистиллированной воды 7×5 литров (дважды в сутки).

Полученный раствор упаривали и анализировали.

DS 30% (по данным спектроскопии ЯМР, более подробно см. в Примере 1).

Пример 5 - Окисление гиалуроновой кислоты под воздействием DMP

К 1%-ному раствору гиалуроновой кислоты (0,1 г, 20 кДа) в ДМСО прибавляли раствор DMP (0,2 экв.) в ДМСО (1 мл). Смесь перемешивали в течение 1 часа при температуре 50°С. Далее раствор разбавляли до концентрации 0,1% и диализовали против смеси (0,1 NaCl, 0,1% NaHCO3), 3×5 литров (один раз в сутки) против дистиллированной воды 7×5 литров (дважды в сутки). Полученный раствор упаривали и анализировали.

DS 10% (по данным спектроскопии ЯМР, более подробно см. в Примере 1).

Пример 6 - Реакция окисленного гиалуронана с амином

Водный раствор окисленной гиалуроновой кислоты (1%) (0,1 г, степень замещения: DS=30%, Пример 4) смешивали с бутиламином (0,4 экв.). Смесь перемешивали 24 часа при температуре 20°С. Осаждали двукратным количеством ацетона и 0,1 мл насыщенного водного раствора NaCl; отфильтровывали и сушили в вакууме.

Полученное желтое вещество анализировали.

ЭСП 328 нм, переход n→n* -CH=N-

Пример 7 - Реакция окисленного гиалуронана с бутиламином и последующее восстановление

Водный раствор окисленной гиалуроновой кислоты (1%) (0,1 г, степень замещения: DS=50%, Пример 3) смешивали с бутиламином (0,4 экв.). Смесь перемешивали в течение 24 часов при температуре 20°С. Далее раствор смешивали с NaBH3CN (3 экв.) в 0,5 мл воды. Смесь перемешивали в течение 24 часов при температуре 20°С. Далее раствор разбавляли до концентрации 0,1% и диализовали против смеси (0,1% NaCl, 0,1% NaHCO3), 3×5 литров (один раз в сутки) и против дистиллированной воды 7×5 литров (дважды в сутки). Полученный раствор упаривали и анализировали.

DS 35% (по данным спектроскопии ЯМР).

Спектр 1H NMR(D2O) δ 3,05 (м, 2Н, полимер-СН2-NH-CH2-), 1,60 (м, 2Н, полимер-СН2-NH-СН2-CH2-), 1,35 (м, 2Н, полимер-СН2-NH-СН2-СН2-CH2-), 0,85 (м, 3Н, -СН2-CH3)

DOSY ЯМР (D2O) IgD (0,85 м.д., -СН2-СН3) ~ -10,3 м2

IgD (1,35 м.д., полимер-СН2-NH-СН2-СН2-СН2-) ~ -10,3 м2

IgD (1,60 м.д., полимер-СН2-NH-СН2-CH2-) ~ -10,3 м2

IgD (3,05 м.д., полимер-СН2-NH-CH2-) ~ -10,3 м2

IgD (2,03 м.д., CH3-СО-МН-полимер) ~ -10,3 м2

IgD H2O) ~ -8,6 м2/c

Пример 8 - Реакция окисленного гиалуронана с диамином и последующее восстановление

Водный раствор окисленной гиалуроновой кислоты (1%) (0,1 г, степень замещения: DS=50%, Пример 3) смешивали с гександиамином (0,4 экв.). Смесь перемешивали в течение 24 часов при температуре 20°С. Далее раствор смешивали с NaBHaCN (3 экв.) в 0,5 мл воды. Смесь перемешивали в течение 24 часов при температуре 20°С. Полученный раствор разбавляли до концентрации 0,1% и диализовали против смеси (0,1% NaCl, 0,1% NaHCO3), 3×5 литров (один раз в сутки) и против дистиллированной воды 7×5 литров (дважды в сутки). Полученный раствор упаривали и анализировали.

DS 35% (по данным спектроскопии ЯМР).

Спектр 1Н ПМР (D2O) δ 3,12 (м, 2Н, полимер-CH2-NH-CH2-), 3,02 (м, 2Н, -CH2-NH2), 1,7 (м, 4Н, -NH-СН2-CH2-СН2-СН2-CH2-), 1,45 (м, 4Н, -NH-СН2-СН2-CH2-CH2-СН2-)

ЯМР (D2O) DOSY IgD (1,45 м.д., -NH-СН2-СН2-CH2-CH2-СН2-) ~ -10,5 м2

IgD (1,7 м.д., -NH-СН2-CH2-СН2-СН2-CH2-) ~ -10,5 м2

IgD (3,02 м.д., -CH2-NH2) ~ -10,5 м2

IgD (2,03 м.д., CH3-СО-NH-полимер) ~ -10,5 м2

lgD(H2O) ~ -8,7 м2/c

Пример 9 - Реакция окисленного гиалуронана с аминогиалуронаном

Водный раствор окисленной гиалуроновой кислоты (1%) (0,1 g, степень замещения:

DS=30%, Пример 4) смешивали с 1%-ным водным раствором производного гиалуронана, замещенного гександиамином (1 экв., DS=35%, Пример 8) при температуре 20°С. Нерастворимый плотный смолистый осадок, образовавшийся через несколько минут, механически измельчали, мелкие фрагменты отделяли фильтрованием и сушили при пониженном давлении.

Фурье-ИК-спектр (KB г) 1700 см-1.

Пример 10 - Восстановительное аминирование окисленного гиалуронана под воздействием лизина

Водный раствор окисленной гиалуроновой кислоты (1%) (0,1 г, степень замещения: DS=30%, Пример 4) смешивали с лизином (0,3 экв.). Смесь перемешивали 24 часа при температуре 20°С. Далее раствор смешивали с раствором NaBH3CN (3 экв.) в 0,5 мл воды. Смесь перемешивали 24 часа при температуре 20°С. Полученный раствор разбавляли до концентрации 0,1% и диализовали против смеси (0,1% NaCl, 0,1% NaHCO3), 3×5 литров (один раз в сутки) и против дистиллированной воды 7×5 литров (дважды в сутки). Полученный раствор упаривали и анализировали.

DS 25% (по данным спектроскопии ЯМР).

Спектр 1Н ПМР (HSQC, DOSY, 2%NaOD/D20):

δ 1,33 (м, 2Н, -СН-СН2-CH2-), 1,48 (м, 2Н, -СН-СН2-CH2-CH2-), 1,55 (м, 1Н, -СН-CHH-), 1,63 (м, 1Н, -CH- CHH-), 2,62 (м, 2Н, -CH-CH2-СН2-СН2-CH2-), 2,65 (м, 1 Н, полимер -CHH-NH-), 2,99 (м, 1Н, полимер- CHJ-NH-), 3,16 (м, 1Н, -CH-СН2).

Пример 11 - Восстановительное аминирование окисленного гиалуронана под воздействием лизина

Водный раствор окисленной гиалуроновой кислоты (1%) (0,1 г, степень замещения: DS=30%, Пример 4) смешивали с лизином (20 экв.). Смесь перемешивали в течение 24 часов при температуре 20°С. Далее раствор смешивали с NaBH3CN (10 экв.) в 0,5 мл воды. Смесь перемешивали 24 часа при температуре 20°С. Раствор разбавляли до концентрации 0,1% и диализовали против смеси (0,1% NaCl, 0,1% NaHCO3), 3×5 литров (один раз в сутки) и против дистиллированной воды 7×5 литров (дважды в сутки). Полученный раствор упаривали и анализировали.

DS 28% (по данным спектроскопии ЯМР, Пример 10)

Пример 12 - Восстановительное аминирование окисленного гиалуронана под воздействием серина

Водный раствор окисленной гиалуроновой кислоты (1%) (0,1 г, степень замещения: DS=30%, Пример 4) смешивали с серином (0,3 экв.). Смесь перемешивали 1 мин при температуре 20°С. Далее раствор смешивали с NaBH3CN (3 экв.) в 0,5 мл воды. Смесь перемешивали в течение 24 часов при температуре 20°С. Раствор разбавляли до концентрации 0,1% и диализовали против смеси (0,1% NaCl, 0,1% NaHCO3), 3×5 литров (один раз в сутки) и против дистиллированной воды 7×5 литров (дважды в сутки). Полученный раствор упаривали и анализировали. DS 26% (по данным спектроскопии ЯМР).

1Н ПМР спектр (HSQC, DOSY) (2% NaOD/D2O), δ: 2,74 (м, 1Н, полимер-CHH-NH-), 3,08 (м, 1Н, полимер-CHH-NH-), 3,21 (м, 1Н, -CH-СН2-ОН), 3,72 (м, 1Н, -СН-CHH-ОН), 3,78 (м, 1Н, -СН-CHH-ОН).

Пример 13 - Восстановительное аминирование окисленного гиалуронана под воздействием аргинина

Водный раствор окисленной гиалуроновой кислоты (1%) (0,1 г, степень замещения:

DS=30%, Пример 4) смешивали с аргинином (0,3 экв.). Смесь перемешивали в течение 100 часов при температуре 20°С. Далее раствор смешивали с NaBH3CN (3 экв.) в 0,5 мл воды. Смесь перемешивали в течение 24 часов при температуре 20°С. Раствор разбавляли до концентрации 0,1% и диализовали против смеси (0,1% NaCl, 0,1% NaHCO3), 3×5 литров (один раз в сутки) и против дистиллированной воды 7×5 литров (дважды в сутки). Полученный раствор упаривали и анализировали.

DS 23% (по данным спектроскопии ЯМР).

1Н ПМР спектр (HSQC, DOSY) (2% NaOD/D2O), δ: 1,61 (м, 2Н, -СН-СН2-CH2-), 1,63 (м, 1Н, -СН-CHH-), 1,70 (м, 1Н, -СН-CHH-), 2,65 (м, 1Н, полимер-CHH-NH-), 3,01 (м, 1Н, полимер -CHH-NH-), 3,13 (м, 1Н, -CH-СН2-), 3,21 (м, 2Н, -СН-СН2-СН2-СН2-).

Пример 14 - Восстановительное аминирование окисленного гиалуронана под воздействием пентапептида PAL-KTTKS (palmytoyl-Lys-Thr-Thr-Lys-Ser)

Раствор окисленной гиалуроновой кислоты (1%) (0,1 г, степень замещения: DS=10%, Пример 1) в смеси вода/изопропиловый спирт 2:1 смешивали с 1%-ным раствором замещенного пентапептида PAL-KTTKS (0,05 экв.) в изопропиловом спирте. Смесь перемешивали в течение 24 часов при температуре 20°С. Далее раствор смешивали с NaBH3CN (3 экв.) в 0,5 мл воды. Смесь перемешивали в течение 24 часов при температуре 20°С. Раствор разбавляли до концентрации 0,1% и диализовали против смеси (0,1% NaCl, 0,1% НаНСО3), 3×5 литров (один раз в сутки) и против дистиллированной воды 7×5 литров (дважды в сутки). Полученный раствор упаривали и анализировали.

DS 8% (по данным спектроскопии ЯМР).

1Н ПМР спектр (HSQC, DOSY) (2% NaOD/D2O), δ: 1,61 (м, 2Н, -СН-СН2-CH2-), 1,63 (м, 1Н, -СН-CHH-), 1,70 (м, 1Н, -СН-CHH-), 2,65 (м, 1Н, полимер -CHH-NH-), 3,01 (м, 1Н, полимер -CHH-NH-), 3,13 (м, 1Н, -CH-СН2-), 3,21 (м, 2Н, -СН-СН2-СН2-CH2-).

Похожие патенты RU2550602C2

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ ОКИСЛЕННОГО ПРОИЗВОДНОГО ГИАЛУРОНОВОЙ КИСЛОТЫ И СПОСОБ ЕГО МОДИФИКАЦИИ 2010
  • Буффа Радован
  • Кеттоу Софиане
  • Поспишилова Люсия
  • Хуэрта-Ангелес Глория
  • Хладкова Драгомира
  • Велебний Владимир
RU2559447C2
НЕНАСЫЩЕННЫЕ ПРОИЗВОДНЫЕ ПОЛИСАХАРИДОВ, СПОСОБ ИХ ПОЛУЧЕНИЯ И ИХ ПРИМЕНЕНИЯ 2017
  • Буффа, Радован
  • Бобула, Томас
  • Седова, Петра
  • Басарабова, Ивана
  • Прочазкова, Павлина
  • Вагнерова, Хана
  • Долескова, Ива
  • Моравчикова, Сона
  • Велебний, Владимир
RU2725500C1
ПРОИЗВОДНОЕ ГИАЛУРОНОВОЙ КИСЛОТЫ, СПОСОБ ЕГО ПОЛУЧЕНИЯ, СПОСОБ ЕГО МОДИФИКАЦИИ И ЕГО ПРИМЕНЕНИЕ 2013
  • Буффа Радован
  • Седова Петра
  • Волфова Люси
  • Басарабова Ивана
  • Посписил Роберт
  • Хасова Мартина
  • Неспорова Кристина
  • Велебни Владимир
RU2647859C2
С-С-АЦИЛИРОВАННОЕ ПРОИЗВОДНОЕ ГИАЛУРОНОВОЙ КИСЛОТЫ, СПОСОБ ЕГО ПОЛУЧЕНИЯ, НАНОМИЦЕЛЛЯРНАЯ КОМПОЗИЦИЯ НА ЕГО ОСНОВЕ, СПОСОБ ЕЕ ПОЛУЧЕНИЯ И СПОСОБ ПОЛУЧЕНИЯ СТАБИЛИЗИРОВАННОЙ НАНОМИЦЕЛЛЯРНОЙ КОМПОЗИЦИИ И ЕЕ ПРИМЕНЕНИЕ 2013
  • Смежкалова Даниэла
  • Хуэрта-Ангелес Глория
  • Бобек Мартин
  • Херманнова Мартина
  • Вистежнова Люси
  • Новотный Ярослав
  • Прикопова Ева
  • Неспорова Кристина
  • Немкова Мирослава
  • Слезингерова Клара
  • Кулханек Яромир
  • Козикова Дагмар
  • Согоркова Яна
  • Куцера Ян
  • Клейн Павел
  • Велебний Владимир
RU2640287C2
ПРОИЗВОДНЫЕ СУЛЬФАТИРОВАННЫХ ПОЛИСАХАРИДОВ, ИХ СПОСОБ ПОЛУЧЕНИЯ, МОДИФИКАЦИЯ И ПРИМЕНЕНИЕ 2016
  • Бобула Томас
  • Буффа Радован
  • Вагнерова Хана
  • Сулакова Романа
  • Волфова Люси
  • Кохутова Ленка
  • Моравкова Вероника
  • Зидек Ондрей
  • Прочазкова Павлина
  • Велебний Владимир
RU2708327C2
СПОСОБ ПОЛУЧЕНИЯ ФУНКЦИОНАЛИЗОВАННЫХ ПРОИЗВОДНЫХ ГИАЛУРОНОВОЙ КИСЛОТЫ И ОБРАЗОВАНИЯ ИХ ГИДРОГЕЛЕЙ 2009
  • Джаммона Гаэтано
  • Палумбо Фабио
  • Питаррези Джованна
RU2523182C2
ПРОИЗВОДНЫЕ НА ОСНОВЕ ГИАЛУРОНОВОЙ КИСЛОТЫ, СПОСОБНЫЕ ОБРАЗОВЫВАТЬ ГИДРОГЕЛИ, СПОСОБ ИХ ПОЛУЧЕНИЯ, ГИДРОГЕЛИ НА ОСНОВЕ УКАЗАННЫХ ПРОИЗВОДНЫХ, СПОСОБ ИХ ПОЛУЧЕНИЯ И ПРИМЕНЕНИЯ 2013
  • Волфова Луцие
  • Правда Мартин
  • Фогларова Марцела
  • Немцова Мирослава
  • Ниедова Кржиштоф
  • Велебни Владимир
RU2586931C2
СПОСОБ СШИВАНИЯ ПОЛИСАХАРИДОВ ПРИ ПОМОЩИ ФОТОУДАЛЯЕМЫХ ЗАЩИТНЫХ ГРУПП 2016
  • Бобула, Томас
  • Буффа, Радован
  • Прочазкова, Павлина
  • Велебний, Владимир
RU2713295C2
КОНЪЮГАТЫ ОЛИГОМЕРА ГИАЛУРОНОВОЙ КИСЛОТЫ ИЛИ ЕЕ СОЛИ, СПОСОБ ИХ ПОЛУЧЕНИЯ И ИХ ПРИМЕНЕНИЕ 2015
  • Буффа Радован
  • Басарабова Ивана
  • Неспорова Кристина
  • Эхлова Тереза
  • Котланд Ондрей
  • Седова Петра
  • Хромек Леос
  • Велебны Владимир
RU2682509C2
НОВЫЕ ПОВЕРХНОСТНО-АКТИВНЫЕ ВЕЩЕСТВА И ИХ ПРИМЕНЕНИЕ 2004
  • Пуччи Бернар
  • Полидори Анж
  • Мишель Николя
  • Фабьяно Анн-Сильви
  • Контино-Пепэн Кристин
  • Салль Жан-Пьер
RU2395493C2

Реферат патента 2015 года ПРОИЗВОДНОЕ ГИАЛУРОНОВОЙ КИСЛОТЫ, СПОСОБ ЕГО ПОЛУЧЕНИЯ И СПОСОБ ЕГО МОДИФИКАЦИИ

Изобретение относится к способам получения и модификации производного гиалуронана, содержащего альдегидную группу в положении (6) глюкозаминного полисахаридного фрагмента. Предложено производное гиалуроновой кислоты. Производное окислено по положению 6 глюкозаминного фрагмента до альдегида (формула X). Его гидратированную форму называют геминальным диолом (формула Y). Способ получения этого производного гиалуроновой кислоты предусматривает взаимодействие гиалуроновой кислоты с периодинаном Десса-Мартина (DMP) в полярном апротонном растворителе. Предпочтительно в качестве полярного апротонного растворителя используют диметилсульфоксид. Также предложен способ модификации полученного производного гиалуроновой кислоты. Окисленное производное гиалуроновой кислоты подвергают взаимодействию с амином общей формулы H2N-R или с гиалуронаном, замещенным группой -R-NH2, где R - алкил с линейной или разветвленной цепью C130 и необязательно содержит ароматические и гетероароматические группы. Изобретение позволяет получить производное гиалуроновой кислоты с различными возможностями дальнейшей модификации за счет альдегидной группы. 3 н. и 13 з.п. ф-лы, 14 пр.

,

Формула изобретения RU 2 550 602 C2

1. Производное гиалуроновой кислоты, окисленное по положению 6 глюкозаминного фрагмента до альдегида, имеющее формулу X, и его гидратированная форма, так называемый геминальный диол, имеющий формулу Y:

2. Способ получения производного гиалуроновой кислоты по п.1, в котором гиалуроновая кислота взаимодействует с периодинаном Десса-Мартина (DMP) в полярном апротонном растворителе, предпочтительно в диметилсульфоксиде.

3. Способ получения по п.2, отличающийся тем, что гиалуроновая кислота находится в форме свободной кислоты или соли.

4. Способ получения по любому из пп.2 или 3, отличающийся тем, что молярная масса гиалуроновой кислоты находится в интервале от 1·104 до 5·106 г-моль-1.

5. Способ получения по любому из пп.2 или 3, отличающийся тем, что реакцию гиалуроновой кислоты с периодинаном Десса-Мартина (DMP) проводят при температуре в интервале от 10 до 50°C, предпочтительно при 20°С, в течение от 5 минут до 150 часов, предпочтительно в течение не менее 10 часов.

6. Способ получения по любому из пп.2 или 3, отличающийся тем, что DMP вводят в количестве от 0,05 до 1 эквивалента по отношению к димеру гиалуроновой кислоты.

7. Способ модификации производного гиалуроновой кислоты, полученного способом по любому из пп.2-6, отличающийся тем, что окисленное производное гиалуроновой кислоты взаимодействует с амином общей формулы H2N-R или с гиалуронаном, замещенным группой -R-NH2, где R - алкил, с линейной или разветвленной цепью C130, необязательно содержащий ароматические или гетероароматические группы.

8. Способ модификации по п.7, отличающийся тем, что окисленное производное гиалуроновой кислоты взаимодействует с аминокислотой.

9. Способ модификации по п.7, отличающийся тем, что окисленное производное гиалуроновой кислоты взаимодействует с пептидом.

10. Способ модификации по п.7, отличающийся тем, что окисленное производное гиалуроновой кислоты взаимодействует с полисахаридом, содержащим свободную аминогруппу.

11. Способ модификации по любому из пп.7-10, отличающийся тем, что количество амина, аминокислоты, пептида или полисахарида находится в интервале от 0,05 до 10 эквивалентов по отношению к димеру гиалуронана.

12. Способ модификации по любому из пп.7-10, отличающийся тем, что реакцию окисленного производного гиалуроновой кислоты с амином, аминокислотой, пептидом или полисахаридом проводят в водном или водно-органическом растворителе при температуре в интервале от 0 до 80°C, предпочтительно при 20°С, в течение от 1 минуты до 24 часов, предпочтительно в течение 1 часа.

13. Способ модификации по п.12, отличающийся тем, что реакцию окисленного производного гиалуроновой кислоты с амином, аминокислотой, пептидом или полисахаридом проводят в присутствии восстановителя NaBH3CN, который добавляют к реакционной смеси через 0-100 часов после добавления амина, аминокислоты, пептида или полисахарида.

14. Способ модификации по п.13, отличающийся тем, что количество восстановителя NaBH3CN находится в интервале от 0 до 20 молярных эквивалентов по отношению к молярному количеству альдегида или геминального диола.

15. Способ модификации по п.12, отличающийся тем, что органический растворитель выбирают из группы, включающей смешивающиеся с водой спирты, предпочтительно изопропиловый и этиловый спирт, смешивающиеся с водой полярные апротонные растворители, предпочтительно диметилсульфоксид.

16. Способ модификации по п.12, отличающийся тем, что количество воды составляет не менее 50 об.% от объема всего раствора.

Документы, цитированные в отчете о поиске Патент 2015 года RU2550602C2

ПРОИЗВОДНЫЕ ГИАЛУРОНОВОЙ КИСЛОТЫ С ПОНИЖЕННОЙ БИОДЕГРАДИРУЕМОСТЬЮ 2007
  • Понеделькина Ирина Юрьевна
  • Саитгалина Эльвира Азаматовна
  • Лукина Елена Сергеевна
  • Одиноков Виктор Николаевич
  • Джемилев Усеин Меметович
RU2350625C2
Топчак-трактор для канатной вспашки 1923
  • Берман С.Л.
SU2002A1
Колосоуборка 1923
  • Беляков И.Д.
SU2009A1
Металлический водоудерживающий щит висячей системы 1922
  • Гебель В.Г.
SU1999A1

RU 2 550 602 C2

Авторы

Буффа Радован

Кеттоу Софиане

Поспишилова Люсия

Беркова Мирослава

Велебний Владимир

Даты

2015-05-10Публикация

2010-12-10Подача