ОЧИСТКА ЗАГРЯЗНЁННОГО ВНЕСЕНИЕМ ОКСИДОВ СЕРЫ РАСТВОРИТЕЛЯ НА ОСНОВЕ АМИНА Российский патент 2015 года по МПК B01D53/14 B01D53/50 B01D9/00 

Описание патента на изобретение RU2559493C2

На электростанциях на ископаемом топливе, генерирующих электроэнергию, при сжигании ископаемого топлива образуется содержащий диоксид углерода дымовой газ. В целях исключения или снижения выбросов диоксида углерода необходимо отделять его от дымовых газов. Для отделения диоксида углерода от газовой смеси широко известны разные методы. В частности, для отделения диоксида углерода от дымового газа после процесса сжигания применяется метод абсорбции-дезорбции. При этом в промышленном масштабе диоксид углерода вымывают из дымового газа посредством абсорбента.

Распространенные химические абсорбенты, как, например, моноэтаноламин, обладают хорошей селективностью и большой емкостью по отношению к диоксиду углерода CO2. Однако аминные растворы в качестве промывочного средства необратимо связывают также кислые компоненты дымового газа, такие как диоксид азота NO2 и диоксид серы SO2 или триоксид серы SO3 в виде сульфита и сульфата, и во время процесса существенно снижают эффективность промывочного средства. Образование сульфита и сульфата происходит в щелочных условиях, присутствующих в растворителях на основе амина, по следующим уравнениям реакции:

S O 2 + 2 O H S O 3 2 + H 2 O

S O 3 + 2 O H S O 4 2 + H 2 O .

Для предупреждения проблемы, вызванной концентрацией сульфита и сульфата, для аминных растворов присутствует возможность очистки дистилляцией. Для этого аминный раствор нагревают, происходит испарение летучих аминов, которые регенерируют конденсацией и в результате отделяют высококипящие примеси.

Правда, заметное давление пара растворенных аминов может быть использовано, с одной стороны, для дистилляционной очистки, но с другой стороны, во время собственно процесса очистки он приводит вследствие контакта с горячим дымовым газом к тому, что амины в малых количествах выбрасываются в окружающую среду вместе с очищенным дымовым газом, что может вызывать нежелательное загрязнение воздуха. Дистилляционные способы очистки требуют, кроме того, больших затрат энергии и на один моль отделенного сульфита или сульфата приходятся два моля активного вещества в остатке, который дополнительно требуется очищать или удалять.

Поэтому, например, соли аминокислоты особенно пригодны в этом отношении для промывки дымовых газов с содержанием CO2, поскольку растворы солей аминокислоты не создают замеряемого давления пара и поэтому не могут уноситься вместе с дымовым газом. Правда, по этой причине при использовании растворов солей аминокислоты невозможна дистилляционная очистка. Для предупреждения блокирования солей аминокислоты кислыми компонентами дымового газа требуется поэтому очень затратная очистка дымового газа (Polishing), обеспечивающая по возможности полное удаление оксидов серы SOx из дымового газа. Эти способы являются очень затратными в части капитальных и производственных вложений.

Следовательно, возникла техническая необходимость в разработке способа очистки загрязненного внесением оксидов серы растворителя на основе амина, при котором активные промывочные вещества практически полностью сохраняются в растворе и который позволяет получить существенно очищенный от сульфита и сульфата растворитель при значительно меньшем расходе энергии и минимальных остатках по сравнению с дистилляционными способами очистки.

Начало этому решению было положено в обоих источниках информации US 2004/0253159 A1 и US 4,389,393. В них описано осаждение сульфата с использованием температуры, причем сульфат получают из водного раствора амина путем добавки гидроксидов или карбонатов при снижении температуры.

Однако недостатком такого способа является то, что в осадок выпадает только сульфат. Для других оксидов серы этот способ недействителен. Именно при промывке дымового газа в растворе амина в качестве промывочного раствора образуются многие другие оксиды серы, которые также подлежат удалению. В частности, это касается широко распространенного диоксида серы, присутствующего в растворе в виде сульфита.

Следовательно задачей изобретения является создание способа очистки загрязненного внесением оксидов серы растворителя на основе амина, в котором исключаются недостатки, присущие уровню техники. В частности, раствор согласно изобретению должен обеспечивать удаление также сульфита из раствора.

Эта задача изобретения решается посредством признаков способа по пункту 1 формулы изобретения. При этом в загрязненный растворитель вносится прежде всего соединение калия, загрязненный растворитель охлаждают до температуры T, в результате снижается растворимость сульфата калия по сравнению с его имеющейся концентрацией. Сульфат калия отфильтровывают и получают очищенный растворитель. Затем в загрязненный растворитель вводят окислитель, в результате чего сульфит окисляется в сульфат.

Способ предназначен, в частности, для очистки растворителя, который загрязнен преимущественно внесением оксидов серы и применяется для промывки дымового газа с содержанием CO2 при проведении процесса отделения диоксида углерода. При этом подобные процессы отделения диоксида углерода CO2 являются неотъемлемой частью очистки дымового газа на электростанциях на ископаемом топливе.

При этом в основе изобретения лежит, в частности, замысел, что загрязненный сульфитом и сульфатом растворитель можно очищать выборочной кристаллизацией.

В способе согласно изобретению сульфат осаждают путем охлаждения растворителя и добавки соединения калия в качестве сульфата калия, при этом концентрация сульфата калия доводится до показателей, превышающих его растворимость. На следующей или параллельной операции сульфат калия отфильтровывают и получают очищенный растворитель.

При этом в изобретении используется низкая растворимость сульфата калия в растворителе на основе амина, которая обеспечивает отделение сульфата калия в результате снижения температуры. При этом предпочтительно загрязненный растворитель охлаждается или приводится к температуре T от 5 до 45°C.

Наряду с сульфатом растворитель загрязнен также сульфитом, который по сравнению с сульфатом является довольно хорошо растворимым, но нелегко выкристаллизовывается со снижением температуры в требуемом диапазоне. Поэтому усовершенствованным вариантом развития способа предусмотрено, чтобы в загрязненный растворитель вводился окислитель и происходило окисление сульфита в сульфат.

В результате добавки соединения калия и окислителя могут образовываться градиенты распределения и местные сверхконцентрации, приводящие из-за слишком высокой концентрации соединения калия к выпадению в осадок или дефектности растворителя вследствие слишком высокой концентрации окислителя. Согласно оптимальному варианту выполнения окислитель и соединение калия смешивают друг с другом перед введением в загрязненный растворитель. В результате смешивания перед введением в растворитель должно достигаться быстрое однородное распределение.

Предпочтительно, чтобы в качестве окислителя использовались перекись водорода и озон. В принципе может применяться и кислород. Однако перекись водорода или озон обладают тем преимуществом, что им присущи достаточная активность и достаточный окислительный потенциал для окисления сульфита, не вызывая дефектности растворителя.

Отдельным вариантом выполнения способа предусмотрено, чтобы количество введенного соединения калия было эквимолярным по отношению к количеству кристаллизованного сульфата калия. В результате процесс кристаллизации будет постоянно обеспечиваться достаточным количеством калия. Также может оказаться эффективной сверхстехиометрическое количество добавляемого соединения калия для создания буфера для процесса кристаллизации.

Согласно предпочтительному варианту развития способа обеспечивают теплообмен между очищенным и загрязненным растворителями, в результате чего загрязненный растворитель охлаждается очищенным растворителем. Это обеспечивает рекуперацию тепла.

Способ может применяться самостоятельно, причем загрязненный растворитель поступает из резервуаров, очищенный растворитель приготавливают также в резервуарах. Предпочтительно способ может быть интегрирован в работу электростанции и применяться для процесса отделения диоксида углерода, благодаря чему загрязненный растворитель может непосредственно выводиться из контура процесса отделения диоксида углерода.

Способ эффективно применяется для очистки растворов солей аминокислоты, а также аминных растворов. Поскольку в отношении растворов солей аминокислоты не может применяться дистилляционная очистка, то благодаря способу впервые обеспечивается возможность достижения эффективного и энергетически приемлемого решения.

Наряду с энергетическими преимуществами при очистке аминных растворов обеспечиваются дополнительные преимущества, в частности при тонкой очистке. С помощью дистилляции возможно выделение только части аминов из растворов и, следовательно, примесей. Значительная часть остается в находящемся в отстойнике растворе. Благодаря способу согласно изобретению этот раствор в отстойнике может дополнительно очищаться, в результате чего регенерируется значительная часть аминов.

Ниже подробнее поясняются примеры выполнения изобретения с помощью приложенных схематических чертежей, на которых изображено:

фиг.1 - способ очистки загрязненного щелочного раствора калия и солей аминокислоты, известный из уровня техники,

фиг.2 - вариант развития показанного на фиг.1 способа с дополнительным процессом смешения, согласно изобретению,

фиг.3 - устройство для очистки загрязненного абсорбента для диоксида углерода.

На фиг.1 показан способ согласно изобретению, включающий три последовательно проводимых технологических операции.

На первой технологической операции 20 подводится и охлаждается раствор 1 калия и солей аминокислоты, загрязненный сульфитом и сульфатом. В результате охлаждения снижается растворимость сульфата калия ниже его имеющейся концентрации, вследствие чего происходит выкристаллизовывание сульфата калия и образуется первая суспензия 24 из загрязненного растворителя 1 и сульфата калия, подаваемая на вторую технологическую операцию 21.

На второй технологической операции 21 в загрязненный растворитель 1 вводится соединение 5 калия, которым компенсируется потеря калия в растворителе, вызванная кристаллизацией сульфата калия. Образующаяся на второй технологической операции суспензия 25 подается на третью технологическую операцию 22.

На третьей технологической операции 22 фильтруют суспензию 25, отделяют сульфат 6 калия и получают очищенный растворитель 3.

На фиг.2 представлен вариант развития изображенного на фиг.1 способа. Дополнительно к способу на фиг.1 на вторую технологическую операцию 21 подается наряду с соединением 5 калия также окислитель 2. Для этого предусмотрен смесительный процесс 23, в который вводятся окислитель 2 и соединение 5 калия, перемешиваются и затем в смешанном состоянии подаются на вторую технологическую операцию 21.

На фиг.3 показано устройство 9 для очистки загрязненного растворителя 1 для диоксида углерода. Устройство 9 содержит в основном реактор 10 для кристаллизации, фильтр 11, холодильник 12 и теплообменник 13.

Реактор 10 для кристаллизации содержит подводящий трубопровод 7 для подачи загрязненного растворителя 1. В подводящий трубопровод врезаны теплообменник 13 и холодильник 12. К реактору 10 для кристаллизации дополнительно подключены подводящий трубопровод 14 для подачи соединения 5 калия и подводящий трубопровод 15 для подачи окислителя 2. К подающему трубопроводу 14 подключен первый регулирующий насос 16, ко второму подводящему трубопроводу 15 - второй регулирующий насос 17. Подводящий трубопровод 15 является при этом факультативным.

На стороне выпуска реактор 10 для кристаллизации подключен к фильтру 11 через трубопровод 8 для подачи суспензии. К трубопроводу 8 для подачи суспензии подключен нагнетательный насос 18.

Для выпуска кристаллического твердого вещества емкость 19 сообщена с фильтром. Для выпуска очищенного растворителя 3 к фильтру 11 подключен трубопровод 26, сообщенный с теплообменником 13. Через теплообменник 13 тепло от загрязненного растворителя 1 передается очищенному растворителю 3.

Наличие теплообменника 13 является необязательным и, в частности, эффективно при непосредственном встраивании устройства 9 в устройство для отделения диоксида углерода.

Хотя изобретение было подробно проиллюстрировано и описано с помощью предпочтительного примера своего выполнения, оно не ограничивается раскрытым примером, и специалист может сделать отсюда выводы относительно других вариантов, не выходя за рамки объема защиты изобретения.

Похожие патенты RU2559493C2

название год авторы номер документа
СПОСОБ И УСТРОЙСТВО ДЛЯ ОЧИСТКИ ЗАГРЯЗНЕННОГО ЩЕЛОЧНОГО РАСТВОРА СОЛИ АМИНОКИСЛОТЫ 2011
  • Гутер Эрл Лоренс Винсент
  • Йох Ральф
  • Гилинг Эрвин Йоханнес Мартинус
  • Шнайдер Рюдигер
  • Ван Дер Мер Йоханнес
  • Вердус Дирк
RU2534124C2
СПОСОБ И УСТРОЙСТВО ДЛЯ УЛАВЛИВАНИЯ УГЛЕРОДА И УДАЛЕНИЯ МУЛЬТИЗАГРЯЗНЕНИЙ В ТОПОЧНОМ ГАЗЕ ИЗ ИСТОЧНИКОВ УГЛЕВОДОРОДНОГО ТОПЛИВА И ИЗВЛЕЧЕНИЯ МНОЖЕСТВЕННЫХ ПОБОЧНЫХ ПРОДУКТОВ 2008
  • Купер Хэл Б. Х.
  • Танг Роберт И.
  • Деглинг Дональд И.
  • Эван Томас К.
  • Эван Сэм М.
RU2461411C2
Способ обезвреживания сернистых соединений кислых газов после аминовой очистки малосернистого углеводородного газа 2023
  • Мнушкин Игорь Анатольевич
RU2824992C1
Способ производства водорода 2022
RU2791358C1
СПОСОБ ОЧИСТКИ ОТХОДЯЩИХ ГАЗОВ 2008
  • Хунзингер Ханс
  • Карлссон Мартин
  • Андерссон Свен
  • Хогг Ульф
RU2488431C2
НОВОЕ АБСОРБИРУЮЩЕЕ СРЕДСТВО И СПОСОБ ВЫДЕЛЕНИЯ ДИОКСИДА СЕРЫ ИЗ ГАЗОВОГО ПОТОКА С ИСПОЛЬЗОВАНИЕМ ДАННОГО СРЕДСТВА 2022
  • Генкин Михаил Владимирович
  • Шабалин Дмитрий Александрович
  • Игумнов Сергей Николаевич
RU2787119C1
СПОСОБ ПОЛУЧЕНИЯ ХЛОРА КАТАЛИТИЧЕСКИМ ОКИСЛЕНИЕМ ХЛОРИСТОГО ВОДОРОДА И СПОСОБ ПОЛУЧЕНИЯ ИЗОЦИАНАТОВ 2008
  • Хаас Михель
  • Брунс Райнер
  • Лодденкемпер Тим
RU2480402C2
СПОСОБ ОЧИСТКИ ТЕХНОЛОГИЧЕСКОГО ГАЗА ОТ ДИОКСИДА СЕРЫ 2005
  • Зелинский Алексей Константинович
  • Зелинский Константин Владимирович
RU2286836C1
АБСОРБЕНТ, СПОСОБ ЕГО ПОЛУЧЕНИЯ И ЕГО ПРИМЕНЕНИЕ 2009
  • Йох Ральф
  • Шнайдер Рюдигер
RU2488429C2
СПОСОБ СОВМЕСТНОГО ПОЛУЧЕНИЯ СОДЕРЖАЩЕГО ОКСИД СЕРЫ ПРОДУКТА И УДОБРЕНИЯ 2006
  • Канари Рики
RU2415829C2

Иллюстрации к изобретению RU 2 559 493 C2

Реферат патента 2015 года ОЧИСТКА ЗАГРЯЗНЁННОГО ВНЕСЕНИЕМ ОКСИДОВ СЕРЫ РАСТВОРИТЕЛЯ НА ОСНОВЕ АМИНА

Изобретение относится к способу и устройству для очистки загрязненного внесением диоксидов серы растворителя на основе амина. В загрязненный растворитель вводят соединение калия и окислитель, в результате чего сульфит окисляется в сульфат, при этом окислитель и соединение калия смешивают между собой перед введением в раствор соли аминокислоты. Загрязненный растворитель охлаждают до температуры Т, в результате чего снижается растворимость сульфата калия по сравнению с его имеющейся концентрацией. Сульфат калия отфильтровывают и получают очищенный растворитель. Изобретение позволяет обеспечивать удаление сульфата из раствора. 2 н. и 13 з.п. ф-лы, 3 ил.

Формула изобретения RU 2 559 493 C2

1. Способ очистки загрязненного внесением оксидов серы растворителя (1) на основе амина, в котором
- в загрязненный растворитель (1) вводят соединение калия и охлаждают загрязненный растворитель (1) до температуры Т, в результате чего снижается растворимость сульфата калия по сравнению с его имеющейся концентрацией,
- отфильтровывают сульфат калия и получают очищенный растворитель (3), отличающийся тем, что в загрязненный растворитель (1) вводят окислитель (2), в результате чего сульфит окисляется в сульфат, при этом окислитель (2) и соединение калия смешивают между собой перед введением в раствор соли аминокислоты.

2. Способ по п. 1, в котором в качестве окислителя (2) применяют перекись водорода или озон.

3. Способ по п. 1 или 2, в котором количество подведенного соединения калия эквимолярно количеству кристаллизованного сульфата калия.

4. Способ по п. 1, в котором температура Т загрязненного растворителя (1) после охлаждения составляет от 5 до 45°С.

5. Способ по п. 1, в котором создают теплообмен между очищенным растворителем (3) и неочищенным растворителем (1), в результате чего загрязненный растворитель (1) охлаждается очищенным растворителем (3).

6. Способ по любому из пп. 1, 2, 4, 5, в котором загрязненный растворитель (1) образуется при проведении процесса (4) отделения диоксида углерода на электростанции на ископаемом топливе.

7. Способ по п. 6, в котором загрязненный растворитель (1), образовавшийся в процессе отделения диоксида углерода, очищают периодически.

8. Способ по любому из пп. 1, 2, 4, 5, 7, в котором загрязненным растворителем (1) является раствор солей аминокислоты.

9. Способ по любому из пп. 1, 2, 4, 5, 7, в котором загрязненным растворителем (1) является один или несколько аминов.

10. Способ по любому из пп. 1, 2, 4, 5, 7, в котором соединением калия являются гидроксид калия KOH, водородкарбонат калия или карбонат калия.

11. Устройство (9) для очистки загрязненного оксидом серы растворителя (1) на основе амина, включающее в себя холодильник (12), реактор (10) для кристаллизации и фильтр (11), при этом в реактор (10) для кристаллизации через холодильник (12) подается загрязненный растворитель (1) и соединение калия, причем из реактора (10) для кристаллизации выпускается кристаллизованный продукт в фильтр (11) и с помощью фильтра очищенный растворитель (3) отделяется от кристаллизованного продукта.

12. Устройство по п. 11, отличающееся тем, что в реактор (10) для кристаллизации дополнительно вводится окислитель, а в реакторе (10) для кристаллизации предусмотрена статическая мешалка, с помощью которой смешиваются окислитель и соединение калия.

13. Устройство (9) по п. 11 или 12, отличающееся тем, что оно является составной частью устройства для отделения диоксида углерода, применяемого на электростанции на ископаемом топливе, и что устройство предусмотрено для очистки загрязненного растворителя (1), образующегося в устройстве для отделения диоксида углерода.

14. Устройство по п. 11 или 12, отличающееся тем, что предусмотрен теплообменник, соединенный первично при подаче с фильтром (11) и первично при отводе с устройством для отделения диоксида углерода, а вторично при подаче с устройством для отделения диоксида углерода и вторично при отводе с реактором (10) для кристаллизации.

15. Устройство по п. 13, отличающееся тем, что предусмотрен теплообменник, соединенный первично при подаче с фильтром (11) и первично при отводе с устройством для отделения диоксида углерода, а вторично при подаче с устройством для отделения диоксида углерода и вторично при отводе с реактором (10) для кристаллизации.

Документы, цитированные в отчете о поиске Патент 2015 года RU2559493C2

US 20040253159 А1, 16.12.2004
US 5853012 А, 19.05.1998
US 4500500 A, 19.02.1985
Способ очистки отходящих газов от 1972
  • Масуми Ацукава
  • Наохару Синода
  • Харуо Кувобара
SU795448A3
US 4389383 A, 21.06.1983
Способ изготовления складчатого заполнителя из композиционных материалов для многослойных панелей 2019
  • Захаров Алексей Генрихович
RU2702583C1
US 5912387 A, 15.06.1999
US 6010664 A, 04.01.2000

RU 2 559 493 C2

Авторы

Форберт Райнальд

Хауке Стефан

Йох Ральф

Ольшевски Франк

Шнайдер Рюдигер

Даты

2015-08-10Публикация

2011-11-08Подача