СПОСОБ ПОЛУЧЕНИЯ МАССИВОВ ОРИЕНТИРОВАННЫХ УГЛЕРОДНЫХ НАНОТРУБОК НА ПОВЕРХНОСТИ ПОДЛОЖКИ Российский патент 2015 года по МПК B82Y30/00 C23C16/26 C23C16/513 

Описание патента на изобретение RU2561616C2

Изобретение относится к технологиям получения массивов ориентированных углеродных нанотрубок на подложках путем плазмохимического осаждения.

Известен способ получения массивов ориентированных углеродных нанотрубок (УНТ) методом каталитического химического осаждения из газовой фазы (CVD). Эта технология основана на проведении реакций термохимического разложения углеродсодержащих соединений на поверхности подложек с нанесенным слоем металлического катализатора. Температура синтеза лежит в диапазоне 600°C-1200°C, в зависимости от исходного углеродсодержащего вещества. Подачу и регулирование газовых потоков: инертного газа-носителя, водорода и исходного углеродсодержащего вещества в реакционную камеру осуществляют через несколько независимых каналов. Внутри реактора в высокотемпературной зоне располагают специально подготовленные подложки с нанесенным слоем катализатора, на которых в процессе синтеза растет массив ориентированных углеродных нанотрубок [HuanWang, JiyunFeng, XijunHu, and Ka Ming Ng "Synthesis of Aligned Carbon Nanotubes on Double-Sided Metallic Substrateby Chemical Vapor Deposition" J. Phys. Chem. С 2007, 111, 12617-12624; Kuei-Yi Lee, Shin-ichi Honda, Mitsuhiro Katayama, Takashi Miyake, Katsuya Himuro, Kenjiro Oura, Jung-Goo Lee, Hirotaro Mori, Takashi Hirao «Vertically aligned growth of carbon nanotubes with long length and high density» J. Vac. Sci. Technol. (2005) В 23, p. 1450]. Для синтеза массивов нанотрубок на подложках большой площади необходимы реакторы с большими линейными размерами. Кроме того, при синтезе на больших подложках слоя из одинаковых по структуре нанотрубок, необходимо обеспечить одинаковые условия протекания процесса, что существенно усложняет конструкцию ректора и удорожает производство УНТ.

Известен способ получения УНТ при использовании плазмохимического осаждения [Y. Yabe, Y. Ohtake, Т. Ishitobi, Y. Show, Т. Izumi, H. Yamauchi «Synthesis of well-aligned carbon nanotubes by radiofrequency plasma enhanced CVD method» Diamond and Related Materials 13 (2004), p. 1292-1295]. Этим способом удается выращивать массивы УНТ, вертикально выровненных относительно поверхности. Вертикальное выравнивание растущих УНТ происходит вдоль направления напряженности поля, что достигается либо применением электрода с постоянным потенциалом смещения, либо соответствующим расположением подложки в ВЧ или СВЧ поле. Плазма также позволяет существенно снизить температуру синтеза до 400°C, т.к. диссоциация углесодержащих прекурсоров происходит в объеме газовой фазы, а не при контакте молекул со стенками реактора, как в термическом CVD. Применение метода PECVD имеет сложность, которая заключается в высокой чувствительности кинетики и механизма роста УНТ от режима синтеза (состав газовых смесей, давление и температура в реакторе) и от аппаратурных вариантов создания плазмы (тлеющий разряд, ВЧ- и СВЧ-разряд, горячий катод, индуктивная плазма) с учетом геометрии камеры [Н. Wang, J. Lin, С.Н.А. Huan, P. Dong, J. He, S.H. Tang, W.K. Eng, T.L.J. Thong «Controlled synthesis of aligned carbon nanotube arrays on catalyst patterned silicon substrates by plasma-enhanced chemical vapor deposition» AppliedSurfaceScience V. 181, 2001, p. 248-254; M. Tanemura, K. Iwata, K. Takahashi, Y. Fujimoto, F. Okuyama, H. Sugie, V. Filip "Growth of aligned carbon nanotubes by plasma-enhanced chemicalvapor deposition: Optimization of growth parameters" J. Appl. Phys. 90, 2001, p. 1529].

Известен способ получения углеродных нанотрубок путем напыления на обрабатываемые подложки углеродных пленок, содержащих нанотрубки, в вакуумной камере в атмосфере инертного газа, магнетронным распылением мишени [Патент РФ №2218299, МПК B82B 3/00, C23C 14/35]. Этот способ является наиболее близким аналогом предлагаемого и принят за прототип изобретения.

Недостатком прототипа является использование при реализации способа замкнутой камеры, что ограничивает размеры размещаемых в ней обрабатываемых подложек.

Изобретение решает задачу создания способа получения массивов ориентированных углеродных нанотрубок на подложках, имеющих поверхности большой площади - до нескольких квадратных метров.

Поставленная задача решается тем, что предлагается способ получения массивов углеродных нанотрубок на поверхности подложки, в соответствии с которым в реакционной камере формируют поток рабочего газа, содержащего несущий газ, газообразный углеводород и предшественник катализатора синтеза углеродных нанотрубок, который направляют на поверхность подложки со скоростью 100-1000 м/с, при этом вдоль потока рабочего газа направляют инфракрасное импульсное лазерное излучение с частотой импульсов 5-100 кГц и энергией импульсов 0,05-0,5 Дж для его активации и локального нагрева поверхности подложки до 600-1000°C, причем упомянутую реакционную камеру перемещают над поверхностью подложки.

Дополнительно на обрабатываемую поверхность подложки может направляться поток инертного газа при его давлении, превышающем давление потока рабочего газа, для экранирования зоны синтеза углеродных нанотрубок от кислорода воздуха.

На Фиг. 1 представлена схема установки для внекамерного синтеза массивов УНТ, где 1 - реакционная камера, 2 - лазерный луч, 3 - подложка, 4 - поворотные зеркала.

На Фиг. 2 представлена схема реакционной камеры для внекамерного синтеза массивов ориентированных УНТ, где 2 - лазерный луч, 3 - подложка, 5 - инертный газ, 6 - место крепления камеры к координатному столу, 7 - рабочий газ, 8 - испаритель, 9 - массив ориентированных УНТ, 10 - вход и выход охлаждающей воды, 11 - оптический плазменный разряд, 12 - фокусирующая линза.

На Фиг. 3 и Фиг. 4 приведены фотографии массивов ориентированных углеродных нанотрубок, полученных при разных условиях синтеза.

Способ осуществляют следующим образом.

Как показано на Фиг. 1, в реакционной камере 1, установленной с возможностью перемещения, формируют поток рабочего газа, содержащего несущий газ, газообразный углеводород и предшественник катализатора синтеза углеродных нанотрубок. На поток рабочего газа одновременно с его формированием воздействуют лазерным лучом 2, направляя его с помощью поворотных зеркал 4.

Схема реакционной камеры приведена на Фиг. 2. Поток рабочего газа направляют на обрабатываемую поверхность подложки 3 со скоростью 100-1000 м/с. Для активации реакционного газа и локального разогрева обрабатываемой поверхности подложки используют инфракрасный импульсный лазер (1 кВт, 60 кГц), вызывающий электронный разряд и образование области лазерной плазмы в реакционной камере. Инфракрасное импульсное лазерное излучение с частотой импульсов 5-100 кГц и энергией импульсов 0,05-0,5 Дж направляют вдоль потока рабочего газа. Активированный рабочий газ из реакционной камеры попадает на обрабатываемую поверхность подложки 3, которая уже разогрета локально до температуры синтеза углеродных нанотрубок, что приводит к синтезу на поверхности подложки углеродных нанотрубок на площади, равной сечению потока рабочего газа.

Реакционную камеру 1 перемещают с помощью координатного стола по поверхности металлической подложки 3 с заданной скоростью, обеспечивающей синтез массива УНТ заданной длины.

В целях защиты зоны синтеза углеродных нанотрубок от окружающего кислорода в нее подают инертный газ. При этом параметры выходного отверстия реакционной камеры, скорости потоков газов и величину зазора между реакционной камерой и подложкой подбирают таким образом, чтобы поток инертного газа экранировал реакционную зону синтеза от окружающего воздуха. Локальная область подложки, например, диаметром до 8 мм нагревается лазерным лучом до температуры 600-1000°C. Поступающие к поверхности подложки продукты разложения рабочего газа - активированные молекулы углеводородов и активированные наночастицы металлического катализатора, являющиеся зародышами нанотрубок, попадают на нагретую поверхность подложки, образуя на ней массив ориентированных углеродных нанотрубок. Подбор частоты следования и энергии лазерных импульсов, а также скорости и массового расхода потока рабочего газа обеспечивает практически полную активацию исходных реагентов.

Реакционная камера способна перемещаться над поверхностью на координатном столе, что позволяет наносить нанотрубки в любой точке подложки, а также покрыть слоем ориентированных нанотрубок всю подложку площадью до 2 м2.

Так как в процессе синтеза углеродных нанотрубок реакционная камера перемещается над поверхностью подложки, то толщина их массива зависит от скорости перемещения, что демонстрируется на фотографиях, выполненных методом электронной микроскопии.

Фотография, приведенная на Фиг. 3, выполнена методом растровой электронной микроскопии для образца, полученного при скорости перемещения реакционной камеры 4 мм/с, при этом диаметр УНТ составляет ~70 нм, а длина 8-10 мкм. Черная полоса - массив УНТ на медной пластине (А). Электронно-микроскопическое изображение слоев УНТ на медной подложке сбоку (Б) и сверху (В). Толщина слоя 8 мкм. Скорость перемещения реакционной камеры 4 мм/с.

На фотографии, приведенной на Фиг. 4, выполненной этим же методом, видно, что уменьшение скорости движения подложки до 2 мм/с привело к увеличению длины УНТ до 15-18 мкм. Черная полоса - это массив УНТ на медной пластине (А). Электронно-микроскопическое изображение слоев УНТ на медной подложке сбоку (Б) и сверху (В). Толщина слоя 15 мкм.

Пример

Поток рабочего газа, содержащий этилен и пентакарбонил железа, подают в реакционную камеру в область активации лазерным излучением. Одновременно, параллельно потоку рабочего газа и лазерному излучению, подают инертный экранирующий газ, например аргон. Поток этилена делят на две части: одну часть направляют напрямую в реакционную камеру, другую часть предварительно насыщают парами катализатора, что позволяет осуществлять регулирование содержания катализатора в реакционной смеси. Скорости потоков составляют для прямого потока этилена 30 л/ч, насыщенного катализатором - 8,6 л/ч, для аргона - скорость 900 л/ч. Затем осуществляют перемещение реакционной камеры со скоростью 2 мм/с (камера имеет возможность перемещения по двум осям координат x, y с заданной скоростью). Одновременно с перемещением камеры включают излучение ИК лазера, преимущественно CO2 лазера, обеспечивающего частоту импульсов в диапазоне 5-100 кГц и энергию импульса в диапазоне 0,5-0,05 Дж, предпочтительная скорость потока рабочего газа может быть в диапазоне 100-1000 м/с. Лазерный луч, проходя через систему фокусировки, вызывает плазменный разряд, при этом часть излучения, проходя через зону разряда, попадает на подложку и нагревает ее до температуры около 750°C, необходимой для протекания реакции синтеза УНТ. Поток смеси газов, пройдя высокотемпературную зону лазерного разряда, активируется и попадает на подложку, где и происходит синтез массива УНТ. Время синтеза определяется скоростью движения реакционной камеры. Для экранирования активированного потока в зоне синтеза от кислорода воздуха (внешней атмосферы) подают инертный газ под давлением, превышающем давление потока рабочего газа в реакционной камере. После завершения реакции синтеза УНТ на подложке отключают лазерное излучение и подачу рабочего газа.

Таким образом, предлагаемый способ позволяет получать массивы ориентированных углеродных нанотрубок на подложках, имеющих поверхности большой площади - до нескольких квадратных метров.

Похожие патенты RU2561616C2

название год авторы номер документа
Способ формирования эмитирующей поверхности автоэмиссионных катодов 2017
  • Сауров Александр Николаевич
  • Козлов Сергей Николаевич
  • Живихин Алексей Васильевич
  • Павлов Александр Алексеевич
  • Булярский Сергей Викторович
RU2645153C1
СПОСОБ ИЗГОТОВЛЕНИЯ ДАТЧИКА ДАВЛЕНИЯ, СОДЕРЖАЩЕГО УГЛЕРОДНЫЕ НАНОТРУБКИ 2012
  • Сауров Александр Николаевич
  • Галперин Вячеслав Александрович
  • Павлов Александр Александрович
  • Благов Евгений Владимирович
  • Шаман Юрий Петрович
  • Шаманаев Артемий Андреевич
  • Скорик Сергей Николаевич
RU2504746C1
СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНЫХ НАНОМАТЕРИАЛОВ С НАНЕСЁННЫМ ДИОКСИДОМ КРЕМНИЯ 2012
  • Чесноков Владимир Викторович
  • Пармон Валентин Николаевич
  • Чичкань Александра Сергеевна
RU2516409C2
СПОСОБ РЕГУЛИРОВАНИЯ ПОВЕРХНОСТНОГО СОПРОТИВЛЕНИЯ ИЗДЕЛИЙ ИЗ ЭЛЕКТРОПРОВОДЯЩИХ ПОЛИМЕРНЫХ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ, МОДИФИЦИРОВАННЫХ УГЛЕРОДНЫМИ НАНОТРУБКАМИ 2023
  • Мосеенков Сергей Иванович
  • Кузнецов Владимир Львович
  • Заворин Алексей Валерьевич
RU2810534C1
СПОСОБ ДЕТЕКЦИИ СПЕЦИФИЧЕСКИХ ПОСЛЕДОВАТЕЛЬНОСТЕЙ НУКЛЕИНОВЫХ КИСЛОТ (ВАРИАНТЫ) И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2011
  • Федоровская Екатерина Олеговна
  • Апарцин Евгений Константинович
  • Новопашина Дарья Сергеевна
  • Булушева Любовь Геннадиевна
  • Веньяминова Алия Гусейновна
  • Окотруб Александр Владимирович
RU2509157C2
СПОСОБ ПОЛУЧЕНИЯ АЭРОГЕЛЕЙ НА ОСНОВЕ МНОГОСЛОЙНЫХ УГЛЕРОДНЫХ НАНОТРУБОК 2014
  • Кузнецов Владимир Львович
  • Красников Дмитрий Викторович
  • Казакова Мария Александровна
  • Мосеенков Сергей Иванович
RU2577273C1
ЧУВСТВИТЕЛЬНЫЙ ЭЛЕМЕНТ ОПТИЧЕСКОГО ДАТЧИКА 2014
  • Сауров Александр Николаевич
  • Павлов Александр Александрович
  • Благов Евгений Владимирович
  • Кицюк Евгений Павлович
  • Шаман Юрий Петрович
  • Шаманаев Артемий Андреевич
  • Скорик Сергей Николаевич
  • Андреева Мария Юрьевна
  • Николаева Наталия Наумовна
RU2576353C1
СПОСОБ ДЕТЕКЦИИ ПРОНИКНОВЕНИЯ УГЛЕРОДНЫХ НАНОТРУБОК В БИОЛОГИЧЕСКУЮ ТКАНЬ 2014
  • Шляхова Елена Валентиновна
  • Булушева Любовь Геннадьевна
  • Окотруб Александр Владимирович
  • Гурова Ольга Анатольевна
  • Омельянчук Леонид Владимирович
  • Дубатолова Татьяна Дмитриевна
  • Окотруб Константин Александрович
  • Суровцев Николай Владимирович
RU2582286C2
СПОСОБ ПОЛУЧЕНИЯ НАНОКОМПОЗИТА 2017
  • Корусенко Петр Михайлович
  • Несов Сергей Николаевич
  • Поворознюк Сергей Николаевич
  • Болотов Валерий Викторович
  • Пушкарев Александр Иванович
RU2664525C1
СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНЫХ НАНОТРУБ 2009
  • Шляхова Елена Валентиновна
  • Окотруб Александр Владимирович
  • Юданов Николай Федорович
  • Булушева Любовь Геннадьевна
RU2397951C1

Иллюстрации к изобретению RU 2 561 616 C2

Реферат патента 2015 года СПОСОБ ПОЛУЧЕНИЯ МАССИВОВ ОРИЕНТИРОВАННЫХ УГЛЕРОДНЫХ НАНОТРУБОК НА ПОВЕРХНОСТИ ПОДЛОЖКИ

Изобретение относится к технологиям получения массивов углеродных нанотрубок на поверхности подложки. В реакционной камере формируют поток рабочего газа, содержащего несущий газ, газообразный углеводород и предшественник катализатора для синтеза углеродных нанотрубок. Поток рабочего газа направляют на поверхность подложки со скоростью 100-1000 м/с. Вдоль потока рабочего газа направляют инфракрасное импульсное лазерное излучение с частотой импульсов 5-100 кГц и энергией импульсов 0,05-0,5 Дж для его активации и локального нагрева поверхности подложки до 600-1000°C. Упомянутую реакционную камеру перемещают над поверхностью подложки. В частном случае осуществления изобретения на поверхность подложки дополнительно направляют поток инертного газа, экранирующий зону синтеза углеродных нанотрубок от воздуха, при его давлении, превышающем давление потока рабочего газа. Обеспечивается получение массивов ориентированных углеродных нанотрубок на подложках, имеющих поверхности большой площади - до нескольких квадратных метров. 1 з.п. ф-лы, 4 ил., 1 пр.

Формула изобретения RU 2 561 616 C2

1. Способ получения массивов углеродных нанотрубок на поверхности подложки, отличающийся тем, что в реакционной камере формируют поток рабочего газа, содержащего несущий газ, газообразный углеводород и предшественник катализатора для синтеза углеродных нанотрубок, при этом упомянутый поток рабочего газа направляют на поверхность подложки со скоростью 100-1000 м/с, причем вдоль потока рабочего газа направляют инфракрасное импульсное лазерное излучение с частотой импульсов 5-100 кГц и энергией импульсов 0,05-0,5 Дж для его активации и локального нагрева поверхности подложки до 600-1000°C, причем упомянутую реакционную камеру перемещают над поверхностью подложки.

2. Способ по п. 1, отличающийся тем, что на поверхность подложки дополнительно направляют поток инертного газа, экранирующий зону синтеза углеродных нанотрубок от воздуха, при его давлении, превышающем давление потока рабочего газа.

Документы, цитированные в отчете о поиске Патент 2015 года RU2561616C2

СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНЫХ НАНОТРУБОК 2002
  • Антоненко С.В.
  • Мальцев С.Н.
RU2218299C1
СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНЫХ НАНОТРУБОК И РЕАКТОР (ВАРИАНТЫ) 2011
  • Предтеченский Михаил Рудольфович
  • Тухто Олег Михайлович
  • Коваль Илья Юрьевич
RU2478572C2
СПОСОБ ПОЛУЧЕНИЯ ВОДОРОДА И УГЛЕРОДНЫХ НАНОТРУБОК ИЗ УГЛЕВОДОРОДНОГО ГАЗА 2008
  • Мальцев Василий Анатольевич
  • Нерушев Олег Алексеевич
  • Новопашин Сергей Андреевич
RU2414418C2
US 7635503 B2, 22.12.2009
US 20120171106 A1, 05.07.2012

RU 2 561 616 C2

Авторы

Архипов Вячеслав Евгеньевич

Гусельников Артем Владимирович

Окотруб Александр Владимирович

Смирнов Александр Леонидович

Грачев Геннадий Николаевич

Багаев Сергей Николаевич

Даты

2015-08-27Публикация

2014-01-09Подача