ПРОКАТ КРУГЛОГО ПОПЕРЕЧНОГО СЕЧЕНИЯ ДЛЯ ИЗГОТОВЛЕНИЯ ВЫСОКОПРОЧНОГО КРЕПЕЖА Российский патент 2015 года по МПК C21D8/06 C22C38/54 

Описание патента на изобретение RU2562719C1

Изобретение относится к металлургии стали и может быть использовано при производстве сортового проката круглого сечения, для холодной осадки, содержащей хром и марганец, преимущественно для изготовления высокопрочного крепежа.

Стали с повышенным содержанием хрома, как правило, обладают повышенной прочностью, достаточной пластичностью, что позволяет использовать их в условиях динамических нагрузок и повышенного трения (например, крепеж, коленчатые валы, зубчатые колеса). Особенности сталей описаны, например, в справочнике В.Н. Журавлева и О.Н. Николаевой «Машиностроительные стали», изд. 3-е. М., «Машиностроение», 1981, с. 101-106.

Известна легированная сталь, содержащая хром, титан и ванадий, которая дополнительно содержит алюминий, что повышает износостойкость при ударно-абразивном изнашивании (см. а.с. СССР №969779, кл. C2C 38/38, опубл. в БИ №40, 1982 г.).

Недостатком этой стали является низкая пластичность. Наиболее близким аналогом к заявляемому объекту является сталь 30X, описанная в ГОСТ 4543-71 «Прокат из легированной конструкционной стали». Она содержит углерод, кремний, марганец, серу, фосфор, хром, никель, медь, и железо и характеризуется содержанием указанных компонентов в соотношении, мас.%:

Углерод 0,24…0,32 Марганец 0,50…0,80 Кремний 0,17…0,37 Фосфор не более 0,035 Сера не более 0,035 Хром 0,80…1,10 Никель не более 0,30 Медь не более 0,30 Железо остальное

Известная сталь не гарантирует получение требуемой способности к высадке, выраженной через отсутствие гарантированного обеспечения бездефектной холодной осадки на 66% после термообработки в связи с наследственной крупнозернистостью данной стали.

Ожидаемый технический результат - получение хороших пластических характеристик проката при сохранении высоких прочностных свойств, позволяющих выдерживать прокату холодную осадку в соответствии с требованиями ГОСТа 10702 для группы осадки 66.

Для решения этой задачи прокат круглого поперечного сечения для изготовления высокопрочного крепежа получают из стали, содержащей углерод, кремний, марганец, серу, фосфор, хром, никель, медь и железо, отличающейся тем, что она дополнительно содержит алюминий, титан, бор и кальций при следующем соотношении, мас.%:

Углерод 0,30…0,35 Марганец 0,50…0,70 Кремний 0,20…0,37 Фосфор до менее 0,020 Сера до менее 0,010 Хром 0,40…0,70 Никель не более 0,15 Медь не более 0,20 Алюминий 0,015…0,035 Титан 0,03…0,05 Бор 0,002…0,005 Кальций 0,0001…0,005 Железо остальное

Все вышеуказанные пределы содержания компонентов в предлагаемой стали получены в результате обработки опытных данных.

Сущность заявляемого технического решения заключается в оптимизации содержания отдельных компонентов в хромсодержащей стали. В результате этого повышаются пластические свойства стали при сохранении прочностных, что особенно важно при ее последующей переработке у потребителя.

Бор при кристаллизации захватывает водород и ограничивает насыщение им стали, стабилизирует подкорковую зону непрерывнолитой заготовки, подавляет ликвацию серы и других примесей - то есть значительно снижает подусадочную ликвацию. Кроме того, нитрид бора BN исключает протекание процессов старения во времени за счет полного связывания азота. Более низкая прочность и повышенная пластичность проката с бором, который по сравнению с аналогичным прокатом из стали без бора, обусловлены влиянием бора, способствующего более равномерному распределению базовых и примесных элементов между составляющими структуры. Кроме того, в результате связывания атомов азота в боронитриды и карбоборонитридные соединения мартенсит в структуре проката с бором имеет меньшую концентрацию азота и как менее твердый и прочный приобретает большую склонность к деформационному формоизменению.

Содержание кремния 0,20-0,37% позволяет получить хорошо раскисленный металл и снизить содержание хрупких силикатов, а также при последующей холодной деформации избежать резкого снижения пластических свойств (в связи с тем, что более высокое содержание кремния препятствует движению дислокаций).

Введение титана обеспечивает снижение загрязненности стали неметаллическими включениями, особенно оксидами, повышается пластичность и обеспечивается заданная степень прокаливаемости полосового проката.

Ограничение верхней границы содержания алюминия позволяет максимально снизить содержание неметаллических включений, повысить качество непрерывнолитой заготовки.

За счет низкой активности кислорода кальций реагирует с серой и выделяется в виде сульфидов кальция. Также кальций реагирует с алюминием и продуктами первичного раскисления с образованием жидких алюминатов кальция, что улучшает условия разливаемости металла. Таким образом, кальций позволяет уменьшить включения глинозема и сульфидов марганца. Введение в металл кальция позволяет изменить морфологию образующих неметаллических включений, переводя ее из "опасных" в более благоприятную, глобулярную и очистить границы зерен от карбонитридов.

Введение в металл кальция помимо снижения загрязненности металла неметаллическими включениями позволяет существенно увеличить количество центров кристаллизации, что в последующей переработке приводит к хорошей штампуемости металла.

Опытную проверку заявляемого технического решения осуществили при производстве стали 30XP в электросталеплавильном цехе ОАО «Магнитогорского металлургического комбината» с последующей ее прокаткой на стане 170. Результаты опытов оценивали по результатам механических испытаний круглого проката.

Наилучшие результаты (выход годного проката в пределах 99,0-99,7 после испытаний на холодную осадку в соответствии с требованиями ГОСТа 10702 для группы осадки 66Т) получены при использовании предлагаемой стали.

Отклонения от требуемого химического состава и получение оптимальной микроструктуры приводили к получению брака по механическим свойствам.

Так, при содержании в стали (мас.%) Al<0,015 (но при рекомендуемом содержании остальных элементов), C<0,30, Mn<0,50, Si<0,20, Cr<0,40, Ca<0,0001 (при том же условии) не удалось получить требуемый выход годного после испытаний на холодную осадку в соответствии с требованиями ГОСТа 10702 для группы осадки 66Т у 10-25% круглого проката. При содержании в стали (мас.%) Al>0,035 (но при рекомендуемом содержании остальных элементов), C>0,35, Mn>0,70, Si>0,37, Cr>0,70 и Ca>0,005, а также повышенном содержании S, Р, Ni и Cu (соответственно, больше 0,010, 0,020, 0,15 и 0,20) недостаточные пластические свойства не позволили получить круг с заданным качеством поверхности круглого проката из-за загрязненности проката неметаллическими включениями и крупного аустенитного зерна, полученного после термообработки.

При получении же круглого проката из стали, химический состав которой имел хотя бы один компонент с отличной (от заявляемой) величиной, отсортировка готового проката по недопустимым отклонениям от заданной нормы испытаний на холодную осадку в соответствии с требованиями ГОСТа 10702 для группы осадки 66Т составляла не менее 1,8-4,2%, причем в ряде случаев пластичность была неудовлетворительной.

Сравнительные испытания стали 30X, выбранной в качестве ближайшего аналога, привели к отсортировке по вышеназванной причине от 20,0-35,0% готового проката. Таким образом, опытная проверка подтвердила приемлемость найденного технического решения для выполнения поставленной цели и его преимущество перед известным объектом.

Реализация предлагаемого изобретения при производстве хромсодержащей стали позволит повысить прибыль от реализации проката с улучшенными потребительскими свойствами.

Пример конкретного выполнения

Круглый прокат хромсодержащей стали диаметром 13 мм

содержит (мас.%):

C=0,31; Si=0,24; Mn=0,61; S=0,004; P=0,012; Cr=0,58; Ni=0.06; Cu=0.05; Al=0.019; Ti=0.041; Ca=0.0025, B=0,0029, остальное - железо.

Похожие патенты RU2562719C1

название год авторы номер документа
ПРОКАТ КРУГЛОГО ПОПЕРЕЧНОГО СЕЧЕНИЯ ДЛЯ ХОЛОДНОЙ ОСАДКИ ИЗ СТАЛИ 2009
  • Ушаков Сергей Николаевич
  • Прохоров Сергей Викторович
  • Унру Сергей Яковлевич
  • Ивин Юрий Александрович
  • Симаков Юрий Владимирович
  • Павлов Владимир Викторович
RU2406778C1
СОРТОВОЙ ПРОКАТ ИЗ БОРСОДЕРЖАЩЕЙ СТАЛИ ПОВЫШЕННОЙ ПРОКАЛИВАЕМОСТИ 2006
  • Угаров Андрей Алексеевич
  • Гонтарук Евгений Иванович
  • Лехтман Анатолий Адольфович
  • Фомин Вячеслав Иванович
  • Бобылев Михаил Викторович
RU2355785C2
ПРОКАТ ПОЛОСОВОЙ ИЗ БОРСОДЕРЖАЩЕЙ МАРГАНЦОВИСТОЙ СТАЛИ 2010
  • Тахаутдинов Рафкат Спартакович
  • Бодяев Юрий Алексеевич
  • Сарычев Борис Александрович
  • Николаев Олег Анатольевич
  • Симаков Юрий Владимирович
  • Ивин Юрий Александрович
  • Казятин Константин Владимирович
  • Павлов Владимир Викторович
RU2458177C1
СТАЛЬ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕЕ (ВАРИАНТЫ) 2008
  • Мальцев Андрей Борисович
  • Кузнецов Виктор Валентинович
  • Струнина Людмила Михайловна
  • Золотова Лариса Юрьевна
  • Ордин Владимир Георгиевич
  • Головко Владимир Андреевич
  • Варфоломеев Владимир Владимирович
  • Рузаев Дмитрий Григорьевич
  • Горин Александр Давидович
RU2387731C2
СПОСОБ ПРОИЗВОДСТВА ТОЛСТОЛИСТОВОГО ВЫСОКОПРОЧНОГО ИЗНОСОСТОЙКОГО ПРОКАТА (ВАРИАНТЫ) 2018
  • Барабаш Константин Юрьевич
  • Латыпов Марат Хатизович
  • Митрофанов Артем Викторович
  • Матросов Максим Юрьевич
  • Мартынов Петр Геннадьевич
  • Горошко Татьяна Васильевна
RU2691809C1
СПОСОБ ИЗГОТОВЛЕНИЯ АРМАТУРНОЙ СТАЛИ 2018
  • Мельников Сергей Сергеевич
  • Троицкий Юрий Андреевич
  • Лебедев Алексей Владимирович
  • Слабожанкин Александр Степанович
  • Старухин Игорь Николаевич
RU2695719C1
АВТОМАТНАЯ СВИНЕЦСОДЕРЖАЩАЯ СТАЛЬ 2012
  • Соляников Андрей Борисович
  • Полянский Михаил Александрович
  • Преин Евгений Юрьевич
  • Гребцов Владимир Анатольевич
  • Шрейдер Алексей Васильевич
  • Четверикова Любовь Викторовна
RU2484173C1
СПОСОБ ПРОИЗВОДСТВА КРУГЛОГО СОРТОВОГО ПРОКАТА ИЗ АВТОМАТНОЙ СТАЛИ 2012
  • Вольшонок Игорь Зиновьевич
  • Трайно Александр Иванович
  • Русаков Андрей Дмитриевич
RU2493267C1
СПОСОБ ИЗГОТОВЛЕНИЯ ИЗ ЛЕГИРОВАННОЙ СТАЛИ ВЫСОКОПРОЧНЫХ КРЕПЕЖНЫХ ИЗДЕЛИЙ БЕЗ ПРОВЕДЕНИЯ СФЕРОИДИЗИРУЮЩЕГО ОТЖИГА 2023
  • Дубовский Сергей Васильевич
  • Канаев Денис Петрович
  • Столяров Алексей Юрьевич
  • Соколов Александр Алексеевич
  • Зайцева Мария Владимировна
  • Дрягун Эдуард Павлович
  • Степанов Алексей Борисович
  • Колдаев Антон Викторович
  • Сорокин Алексей Александрович
  • Зайцев Александр Иванович
RU2814574C1
СПОСОБ ПРОИЗВОДСТВА КРУГЛОГО СОРТОВОГО ПРОКАТА ИЗ БОРСОДЕРЖАЩЕЙ СТАЛИ С ПОВЫШЕННОЙ ПЛАСТИЧНОСТЬЮ 2017
  • Водовозова Галина Сергеевна
  • Ронжина Людмила Николаевна
  • Панина Юлия Дмитриевна
  • Родина Лариса Альбертовна
RU2636542C1

Реферат патента 2015 года ПРОКАТ КРУГЛОГО ПОПЕРЕЧНОГО СЕЧЕНИЯ ДЛЯ ИЗГОТОВЛЕНИЯ ВЫСОКОПРОЧНОГО КРЕПЕЖА

Изобретение относится к металлургии стали и может быть использовано при производстве сортового проката круглого сечения для изготовления высокопрочного крепежа холодной осадкой. Для повышения пластических характеристик при сохранении высоких прочностных свойств получают сталь, содержащую, мас.%: углерод 0,30-0,35, марганец 0,50-0,70, кремний 0,20-0,37, фосфор менее 0,020, сера менее 0,010, хром 0,40-0,70, никель не более 0,15, медь не более 0,20, алюминий 0,015-0,035, титан 0,03-0,05, бор 0,002-0,005, кальций 0,0001-0,005 и железо остальное. Приведенный состав при производстве проката круглого поперечного сечения для изготовления высокопрочного крепежа позволит повысить прибыль от реализации проката с улучшенными потребительскими свойствами. 1 пр.

Формула изобретения RU 2 562 719 C1

Сталь для проката круглого поперечного сечения для изготовления высокопрочного крепежа, содержащая углерод, кремний, марганец, серу, фосфор, хром, никель, медь и железо, отличающаяся тем, что она дополнительно содержит алюминий, титан, бор и кальций при следующем соотношении, мас. %:
углерод 0,30-0,35 марганец 0,50-0,70 кремний 0,20-0,37 фосфор менее 0,020 сера менее 0,010 хром 0,40-0,70 никель не более 0,15 медь не более 0,20 алюминий 0,015-0,035 титан 0,03-0,05 бор 0,002-0,005 кальций 0,0001-0,005 железо остальное

Документы, цитированные в отчете о поиске Патент 2015 года RU2562719C1

КРУГЛЫЙ СОРТОВОЙ ПРОКАТ ИЗ БОРСОДЕРЖАЩЕЙ СТАЛИ ПОВЫШЕННОЙ ПРОКАЛИВАЕМОСТИ 2011
  • Соляников Андрей Борисович
  • Полянский Михаил Александрович
  • Преин Евгений Юрьевич
  • Гребцов Владимир Анатольевич
  • Шрейдер Алексей Васильевич
  • Четверикова Любовь Викторовна
RU2469106C1
СОРТОВОЙ ПРОКАТ КРУГЛЫЙ ИЗ БОРСОДЕРЖАЩЕЙ СТАЛИ ДЛЯ ХОЛОДНОЙ ОБЪЕМНОЙ ШТАМПОВКИ 2006
  • Шляхов Николай Александрович
  • Гонтарук Евгений Иванович
  • Лехтман Анатолий Адольфович
  • Фомин Вячеслав Иванович
  • Бобылев Михаил Викторович
RU2336316C2
СТАЛЬ, ИЗДЕЛИЕ ИЗ СТАЛИ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2005
  • Кузнецов Юрий Васильевич
RU2270269C1
0
SU126003A1
СПОСОБ ПРОИЗВОДСТВА ИЗ НЕПРЕРЫВНОЛИТОЙ ЗАГОТОВКИ СОРТОВОГО ПРОКАТА БОРСОДЕРЖАЩЕЙ СТАЛИ ДЛЯ ХОЛОДНОЙ ОБЪЕМНОЙ ШТАМПОВКИ ВЫСОКОПРОЧНЫХ КРЕПЕЖНЫХ ДЕТАЛЕЙ 2003
  • Бобылев М.В.
  • Закиров Д.М.
  • Кулапов А.Н.
  • Степанов Н.В.
  • Антонова З.А.
  • Лехтман А.А.
  • Гонтарук Е.И.
  • Майстренко В.В.
  • Фомин В.И.
RU2237728C1
US 20100000636 A1, 07.01.2010

RU 2 562 719 C1

Авторы

Павлов Владимир Викторович

Новицкий Руслан Витальевич

Ивин Юрий Александрович

Дзюба Антон Юрьевич

Даты

2015-09-10Публикация

2014-04-29Подача