Предлагаемое изобретение относится к области получения наноструктур на поверхности карбида кремния.
Из уровня техники известен способ получения наноструктур на поверхности твердых тел, включающий лазерную абляцию в кювете с твердой мишенью, закрепленной на дне кюветы (см., например, Е.В. Бармина, М. Барбероглоу, В. Зорба, А.В. Симакин, Е. Стратакис, Г.А. Шафеев, К. Фотакис.- Квантовая электроника, 39, 89-93, (2009)). В качестве рабочей жидкости использовался этанол, пропанол или вода. В качестве материала мишеней использовались Al, Та, Ti, W и др.
Недостатками известного способа является то, что невозможно получить достаточный коэффициент, пропуская в случае использования подложки из применяемых качестве материала мишеней Al, Та, Ti, W и др, например, в светодиодах системы flip-chip.
Технический результат предлагаемого способа заключается в увеличении коэффициента пропускания, что является важной характеристикой в случае использования подложки из карбида кремния в светодиодах системы flip-chip.
Технический результат достигается тем, что применяют способ получения наноструктур на поверхности карбида кремния согласно настоящему изобретению. Способ содержит этапы, на которых устанавливают твердую мишень в рабочую кювету с жидкостью, устанавливают рабочую кювету с твердой мишенью на координатный столик, осуществляют лазерную абляцию при помощи Nd:YAG лазера, работающего в импульсном режиме, при этом Nd:YAG лазер осуществляет облучение твердой мишени ультрафиолетовым излучением на длине волны 355 нм, с длительностью импульса 10 пс, с частотой повторения импульса 50 кГц и со средней мощностью 3,5 Вт, и в качестве жидкости используют воду, прошедшую этап очистки в системе обратного осмоса.
Указанный технический результат достигается тем, что за счет рельефа, возникающего после воздействия ультрафиолетового лазерного излучения, меняется эффективный относительный показатель преломления на границе карбид кремния - воздух. Средний размер наноструктур, получаемых в ходе облучения карбида кремния ультрафиолетовым лазерным излучением, меньше, чем длина волны излучения светодиода.
Указанный технический результат достигается также тем, что облучение происходит в воде, очищенной обратным осмосом. В случае облучения на воздухе абляция протекает неконгруэнтно - карбид кремния разлагается на кремний и углерод, соответственно. Указанный неконгруэнтный режим является нежелательным, так как в этом случае за счет химического состава облученной поверхности коэффициент поглощения карбида кремния увеличится.
Сущность способа поясняется чертежами, на которых на Фиг.1:
1 - пучок лазерного излучения;
2 - кварцевая фокусирующая линза (фокусное расстояние 5 см);
3 - кювета с водой, очищенной обратным осмосом;
4 - мишень из карбида кремния;
5 - X-Y координатный столик.
На Фиг.2 представлена морфология поверхности карбида кремния после воздействия ультрафиолетового лазерного излучения. Изображение получено с помощью атомно-силового микроскопа. Глубина рельефа зависит от числа лазерных импульсов и плотности энергии на образце, которая обычно составляет несколько Джоулей на квадратный сантиметр.
Характерный поперечный размер наноструктур составляет 180-250 нанометров, в зависимости от плотности энергии лазерного излучения на образце.
Предлагаемым способом получения наноструктур является облучение ультрафиолетовым излучением (1) мишени (4) из карбида кремния (4H-SiC) в воде, очищенной обратным осмосом. Лазерное излучение фокусируется на мишени (4) посредством кварцевой фокусирующей линзы (2) с фокусным расстоянием 5 см.
Мишень (4) в свою очередь находится в кювете (3) с водой, очищенной обратным осмосом, которая стоит на X-Y координатном столике (5) для возможности ее перемещения с заданной скоростью.
Лазерное излучение фокусировалось на мишени (4) сквозь слой воды толщиной несколько миллиметров, а площадь сечения пучка в плоскости мишени (4) определялась по размерам модифицированной области.
В качестве источника излучения используется Nd:YAG лазер (третья гармоника). Длина волны - 355 нм, длительность импульса - 10 пс, частота повторений - 50 кГц, средняя мощность - 3,5 Вт. За счет того, что величина кванта лазерного излучения (3,48 эВ) больше, чем размер запрещенной зоны в карбиде кремния (3,2 эВ), реализуется случай поверхностного поглощения. В результате возможно плавление материала мишени и образование наноструктур на ее поверхности.
название | год | авторы | номер документа |
---|---|---|---|
Способ получения различных видов морфологии поверхности карбида кремния | 2019 |
|
RU2724142C1 |
СПОСОБ АНАЛИЗА ХИМИЧЕСКОГО СОСТАВА МАТЕРИАЛОВ | 2012 |
|
RU2539740C2 |
СПОСОБ ПОЛУЧЕНИЯ ГРАФЕНА | 2015 |
|
RU2572325C1 |
ИЗБИРАТЕЛЬНЫЙ ЛАЗЕРНО-СТИМУЛИРОВАННЫЙ ПЕРЕНОС ДИСКРЕТНЫХ КОМПОНЕНТОВ | 2012 |
|
RU2582160C2 |
СПОСОБ ПОЛУЧЕНИЯ ТОНКИХ ПЛЕНОК ИЗ КОЛЛОИДНЫХ РАСТВОРОВ НАНОЧАСТИЦ БЛАГОРОДНЫХ МЕТАЛЛОВ И ИХ СПЛАВОВ, ПОЛУЧЕННЫХ МЕТОДОМ ИМПУЛЬСНОЙ ЛАЗЕРНОЙ АБЛЯЦИИ ДЛЯ СПЕКТРОСКОПИИ УСИЛЕННОГО КОМБИНАЦИОННОГО РАССЕЯНИЯ | 2022 |
|
RU2789995C1 |
СПОСОБ ПОЛУЧЕНИЯ КВАНТОВЫХ ТОЧЕК | 2023 |
|
RU2824336C1 |
СПОСОБ ПОЛУЧЕНИЯ СФЕРИЧЕСКИХ КОЛЛОИДНЫХ НАНОРАЗМЕРНЫХ ЧАСТИЦ ЗОЛОТА МЕТОДОМ ИМПУЛЬСНОЙ ЛАЗЕРНОЙ АБЛЯЦИИ | 2023 |
|
RU2825640C1 |
СПОСОБ ПОЛУЧЕНИЯ ПОВЕРХНОСТЕЙ ВЫСОКОГО КАЧЕСТВА И ИЗДЕЛИЕ С ПОВЕРХНОСТЬЮ ВЫСОКОГО КАЧЕСТВА | 2007 |
|
RU2435871C2 |
СПОСОБ ПОЛУЧЕНИЯ НАНОЧАСТИЦ МЕТАЛЛОВ, НАСЫЩЕННЫХ ВОДОРОДОМ, И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2013 |
|
RU2569538C2 |
СПОСОБ ФОРМИРОВАНИЯ НАНОСТРУКТУР | 2009 |
|
RU2407102C2 |
Настоящее изобретение относится к области получения наноструктур на поверхности карбида кремния. Cпособ получения наноструктур на поверхности карбида кремния содержит этапы, на которых устанавливают твердую мишень в рабочую кювету с жидкостью, устанавливают рабочую кювету с твердой мишенью на координатный столик, осуществляют лазерную абляцию при помощи Nd:YAG лазера, работающего в импульсном режиме, при этом Nd:YAG лазер осуществляет облучение твердой мишени ультрафиолетовым излучением на длине волны 355 нм, с длительностью импульса 10 пс, с частотой повторения импульса 50 кГц и со средней мощностью 3,5 Вт, и в качестве жидкости используют воду, прошедшую этап очистки в системе обратного осмоса. Технический результат изобретения заключается в увеличении коэффициента пропускания карбида кремния. 2 ил.
Способ получения наноструктур на поверхности карбида кремния, содержащий этапы, на которых:
- устанавливают твердую мишень в рабочую кювету с жидкостью;
- устанавливают рабочую кювету с твердой мишенью на координатный столик;
- осуществляют лазерную абляцию при помощи Nd:YAG лазера, работающего в импульсном режиме, отличающийся тем, что
- Nd:YAG лазер осуществляет облучение твердой мишени ультрафиолетовым излучением на длине волны 355 нм, с длительностью импульса 10 пс, с частотой повторения импульса 50 кГц и со средней мощностью 3,5 Вт; и
- в качестве жидкости используют воду, прошедшую этап очистки в системе обратного осмоса.
СПОСОБ ПОЛУЧЕНИЯ ТОНКИХ ПЛЕНОК КАРБИДА КРЕМНИЯ МЕТОДОМ ВАКУУМНОЙ ЛАЗЕРНОЙ АБЛЯЦИИ | 2007 |
|
RU2350686C2 |
US 5406906 A, 18.04.1995 | |||
US 5529949 A, 25.06.1996 | |||
US 6183714 B1, 06.02.2001 | |||
US 2010301013 A1, 02.12.2010. |
Авторы
Даты
2015-09-20—Публикация
2013-11-01—Подача