СПОСОБ ПОЛУЧЕНИЯ ПОРОШКОВОГО МАТЕРИАЛА НА ОСНОВЕ ТУГОПЛАВКИХ МЕТАЛЛОВ Российский патент 2015 года по МПК C01G17/02 C01G25/02 C01G27/02 B02C15/00 

Описание патента на изобретение RU2564363C1

Изобретение относится к способам получения порошковых материалов на основе германатов тугоплавких металлов, а именно циркония и гафния, которые могут быть использованы в качестве компонентов термостойких керамических изделий и люминофоров. Подобные изделия могут работать в агрессивной среде при высоких тепловых нагрузках и находят применение в качестве термостойкой системы теплозащиты поверхности летательных аппаратов и компонентов газотурбинных двигателей, а также в качестве люминесцентных экранов в медицине.

Известен способ получения германатов циркония, гафния и титана, в котором в качестве исходных веществ используют порошки диоксидов вышеуказанных металлов и германия [1. J. Lefevre. Phases de type fluorine dans les systemes a base de zircone. Ann.Chim., t.8, 1963, n.1-2, p.129-135].

Смеси исходного диоксида циркония и диоксида германия нагревают в кварцевой запаянной ампуле при температуре 1300°С в течение 4 часов. Нагревание осуществляется в парах диоксида германия. Недостатком способа является высокая температура синтеза, превышающая температуру плавления диоксида германия, высокая энергоемкость процесса и необходимость использования избыточного количества диоксида германия для получения стехиометрического продукта. Нагревание смеси до температуры, превышающей температуру плавления диоксида германия, может приводить к потере (испарению) диоксида германия и нарушению стехиометрии продукта. Нарушение стехиометрии конечного продукта приводит к снижению люминесцентных свойств.

Известен также способ получения германатов циркония и гафния, основанный на соосаждении гидратированных оксидов циркония / гафния и германия с последующим их прокаливанием на воздухе до 1100°С в течение 6 часов [2, P.M. Lambert. Hafnium Germanate from a Hydrous Germanium Oxide Gel. Inorg. Chem., 1998, V.37, p.1352-1357; 3, J. Balencie, L. Levy, J.-F. Hochepied. Synthesis of hafnium germinate (HfGeO4) particles: Impact of crystallization route on X/UV conversation properties. Mater. Chem. Phys., 2008, v.112, р.546-550]. С этой целью, стехиометрические количества октагидрата оксохлорида гафния и аморфного GeO2 (обычно 3.8×10-2 М) растворяют при непрерывном перемешивании в 150 и 400 мл дистиллированной воды, соответственно. Оба раствора сливают и перемешивают непрерывно со скоростью 500 оборотов в минуту. Далее по каплям добавляют соответствующее количество раствора аммиака. Температуру и рН непрерывно контролируют во время реакции. Конечную суспензию, рН которой составляет 7.5 и 9, перемешивают в течение 1 ч. Наконец, продукт отфильтровывают, промывают дистиллированной водой, трижды чередуя стадии диспергирования и центрифугирования. Высушенный продукт нагревают в печи при 1100°С в течение 6 часов на воздухе. Недостатком указанного способа является многостадийность процесса, большое количество реактивов, разные стадии (фильтрование, центрифугирование и т.п.), необходимость постоянного контроля кислотности среды. Аналогичным способом осуществляют синтез и германата циркония.

Наиболее близким по технической сущности к заявляемому изобретению является способ, описанный в [4, А.В.Уткин, Н.В.Булина, И.В.Беленькая, Н.И.Бакланова. "Фазовый анализ системы ZrO2-GeO2”. Неорган. материалы, 2012, Т.48, №6, с. 694-699; 5, Utkin AV, Prokip VE., Baklanova NI. "Composition and microstructure of zirconium and hafnium germanates obtained by different chemical routes". J.Solid State Chem. 2014, V. 209, р. 89-96]. Согласно этому способу, синтез германатов циркония и гафния проводят из диоксидов. Для этого готовят шихту из смеси диоксидов ZrO2/ НfО2 и диоксида GeO2 с мольным отношением 1:1. Смеси помещают в корундовые тигли и нагревают на воздухе со скоростью 5°С/мин до температуры 1300°С, после чего выдерживают при данной температуре в течение 6 часов. Охлаждение проводят в печи. В этих условиях выход продукта германата циркония ZrGeO4 составляет 98, а выход HfGeO4 - 94%, соответственно. Увеличение продолжительности нагрева до 40 часов с прерыванием нагрева и промежуточным диспергированием не увеличивает (в пределах ошибки определения) выход конечных продуктов.

Недостатками известного способа является необходимость использования высокой температуры синтеза, что приводит к потерям диоксида германия из-за его высокой летучести при температуре выше 1200°С. Так, согласно данным [6, Е.К.Казенас, Ю.В.Цветков. Испарение оксидов. - М.: Наука, 1997. - 543 с], давление паров молекул GeO2 над GeO2 жидким составляет 0.185 атм. при 1600К (~1300°С), и 0.023 атм. при 1500К (~1200°С). Нарушение стехиометрии продукта из-за потери диоксида германия приводит к деградации люминесцентных свойств.

Задача, решаемая заявляемым техническим решением, заключается в создании нового, простого и более эффективного способа синтеза порошкового материала на основе германатов циркония и гафния из простых диоксидов при температуре не выше 1200°С.

Поставленная задача решается благодаря тому, что в заявляемом способе получения порошкового материала на основе германатов тугоплавких металлов, включающем смешение исходных диоксида германия и диоксида циркония или гафния и прокаливание, исходные диоксиды смешивают в стехиометрическом соотношении и подвергают механохимической активации в шаровой планетарной мельнице, футерованной диоксидом циркония, мелющими шарами из диоксида циркония с ускорением мелющих шаров 30g при загрузке мелющих шаров не менее 6 г/г обрабатываемых диоксидов, в течение 30-60 мин, а прокаливание проводят при температуре 1200°С в течение не менее 6 часов.

Приведенные отличительные признаки заявляемого технического решения являются существенными.

Благодаря тому, что в заявляемом техническом решении используется предварительная механохимическая обработка смеси диоксида германия и диоксида циркония или гафния, смесь диоксидов гомогенизируется, увеличивается степень аморфизации диоксида германия, что позволяет равномерно распределить его по поверхности частиц диоксида циркония или диоксида гафния. В результате, увеличивается площадь контакта между реагирующими частицами диоксида германия и диоксида циркония или диоксида гафния, что приводит к увеличению скорости взаимодействия между ними и достижению практически 100% керамического выхода при более низкой температуре, например, 1200°С, чем в прототипе.

Для механохимической обработки используют футеровку и шары из диоксида циркония. Использование футеровки и мелющих шаров из других материалов, например, стали приводит к загрязнению продуктов железом и другими компонентами, так как твердость диоксида циркония по Викерсу примерно в десять раз превышает твердость стали.

Ускорение мелющих шаров составляет 30 g. Увеличение механической нагрузки на обрабатываемый материал выше 30 g энергетически нецелесообразно. Уменьшение механической нагрузки ниже 30 g приводит к недостаточной активации исходных компонентов - диоксидов германия, циркония и гафния, что вынуждает увеличивать время термической обработки для получения продукта с высоким выходом.

Загрузка шаров должна быть не менее 6 г/г обрабатываемого материала, так как при меньшей загрузке шаров уменьшается степень их воздействия на исходную шихту из смеси диоксидов германия и диоксидов циркония/гафния.

Время механохимической обработки смеси диоксида германия и диоксида тугоплавкого металла составляет 30-60 минут. Уменьшение времени предварительной механохимической обработки приводит к уменьшению выхода продукта.

Время прокаливания смеси диоксидов, подвергшихся механохимической обработке, составляет не менее 6 часов. Уменьшение времени прокаливания приводит к уменьшению выхода продукта.

Поиск, проведенный по патентным и научно-техническим источникам информации, позволил установить, что заявляемое техническое решение соответствует критерию «новизна» по действующему законодательству.

Совокупность существенных отличительных признаков не известна из существующего уровня техники, позволяет решить поставленную задачу и сделать вывод о соответствии заявляемого технического решения критерию «изобретательский уровень».

Примеры конкретного выполнения заявляемого способа.

Пример 1.

Навески исходных диоксидов германия и циркония или гафния помещают в барабан планетарной мельницы, футерованной диоксидом циркония, с мелющими шарами из диоксида циркония. Смесь подвергают механохимической обработке в течение 30-60 минут. Затем смесь выгружают из мельницы и помещают в корундовый тигель, который, в свою очередь, помещают в муфельную печь и нагревают до температуры 1200°С, выдерживая при этой температуре не менее 6 часов.

Пример 2.

Смеси диоксида германия и диоксида гафния в молярном соотношении 1:1, с общей массой 6 г загружают в шаровую мельницу, в которой футеровка и мелющие шары общей массой 32 г изготовлены из диоксида циркония. Смесь подвергают механохимической обработке в течение 60 минут. После окончания обработки смесь выгружают из мельницы, помещают в корундовый тигель, а затем нагревают в муфельной печи в воздушной атмосфере до температуры 1200°С и выдерживают при этой температуре 6 часов. Выход германата гафния HfGeO4 составляет 95%.

Пример 3.

Смеси диоксида германия и диоксида гафния в молярном соотношении 1:1, с общей массой 6 г загружают в шаровую мельницу, в которой футеровка и мелющие шары общей массой 32 г изготовлены из диоксида циркония. Смесь подвергают механохимической обработке в течение 60 минут. После окончания обработки смесь выгружают из мельницы, помещают в корундовый тигель, а затем нагревают в муфельной печи в воздушной атмосфере до температуры 1200°С и выдерживают при этой температуре 2 часа. Выход германата гафния составляет 75%.

Пример 4.

Смеси диоксида германия и диоксида циркония в молярном соотношении 1:1, с общей массой 6 г загружают в шаровую мельницу, в которой футеровка и мелющие шары общей массой 32 г изготовлены из диоксида циркония. Смесь подвергают механохимической обработке в течение 60 минут. После окончания обработки смеси выгружают из мельницы и помещают в корундовый тигель, нагревают в муфельной печи в воздушной атмосфере до температуры 1200°С и выдерживают при этой температуре 6 часов. Выход германатов циркония составляет 99%.

Пример 6.

Смеси диоксида германия и диоксида циркония в молярном соотношении 1:1, с общей массой 6 г загружают в шаровую мельницу, в которой футеровка и мелющие шары общей массой 32 г изготовлены из диоксида циркония. Смесь подвергают механохимической обработке в течение 30 минут. После окончания обработки смеси выгружают из мельницы и помещают в корундовый тигель, нагревают в муфельной печи в воздушной атмосфере до температуры 1200°С и выдерживают при этой температуре 6 часов. Выход германатов циркония составляет 98%.

Пример 7.

Смеси диоксида германия и диоксида циркония в молярном соотношении 1:1, с общей массой 6 г загружают в шаровую мельницу, в которой футеровка и мелющие шары общей массой 32 г изготовлены из диоксида циркония. Смесь подвергают механохимической обработке в течение 60 минут. После окончания обработки смеси выгружают из мельницы и помещают в корундовый тигель, нагревают в муфельной печи в воздушной атмосфере до температуры 1000°С и выдерживают при этой температуре 6 часов. Выход германатов циркония составляет 12%.

Пример 8.

Смеси диоксида германия и диоксида циркония в молярном соотношении 1:1, с общей массой 6 г загружают в шаровую мельницу, в которой футеровка и мелющие шары общей массой 20 г изготовлены из диоксида циркония. Смесь подвергают механохимической обработке в течение 30 минут. После окончания обработки смеси выгружают из мельницы и помещают в корундовый тигель, нагревают в муфельной печи в воздушной атмосфере до температуры 1200°С и выдерживают при этой температуре 6 часов. Выход германатов циркония составляет 74%.

Примеры конкретного выполнения заявляемого способа сведены в таблицу

№ п/п Загрузка мелющих тел, г/г шихты Время механохимической обработки, мин. Температура прокаливания, °С Время прокаливания, ч Выход германатов циркония, % Выход германата гафния, % 1 5,3 5 1200 6 82.5 67.6 2 5,3 10 1200 6 85 72.5 3 5,3 30 1200 6 98 88 4 5,3 60 1200 6 99 95 5 5,3 60 1000 6 12 10 6 5,3 60 1200 2 78 75 7 3,3 60 1200 6 74 68

Реакция взаимодействия диоксида германия и диоксида циркония (диоксида гафния) осуществляется при температуре 1200°С. Эта температура на 100 градусов ниже той, которая указана в прототипе. Более высокая температура синтеза, например, 1300°С приводит к интенсивному испарению диоксида германия благодаря его высокой летучести и, как следствие, образованию нестехиометрических продуктов. Проведение процесса при температуре 1200°С позволяет исключить потери диоксида германия за счет его испарения и получить стехиометрические продукты - германаты циркония или гафния.

Технический результат, достигаемый при использовании заявляемого технического решения, заключается в повышении выхода получаемых оксидов за счет устранения потерь диоксида германия из-за его высокой летучести при температуре выше 1200°С, а также получении германатов тугоплавких металлов в точном соответствии со стехиометрией, что способствует сохранению люминесцентных свойств получаемых оксидов.

Германаты циркония или гафния, полученные с использованием предварительной механохимической обработки, испускают спектры люминесценции при облучении рентгеновским излучением, в отличие от тех германатов, которые были получены другими способами. Это позволяет сделать вывод о получении стехиометрических соединений германатов циркония и гафния.

На Фиг. 1 показан спектр люминесценции германата гафния, а на Фиг. 2 - спектр люминесценции германата циркония ZrGeO4, подвергнутых предварительной механохимической обработке.

Для получения эмиссионных спектров порошки германатов циркония или гафния помещались в кювету из оксида алюминия и облучались рентгеновским излучением (Сu Кα - излучение, параметры 40 кВ/40 мА). Эмиссионные спектры были измерены в области 200-700 нм. Присутствие интенсивных полос в спектрах испускания ZrGeO4 и HfGeO4 свидетельствует о высокой переизлучательной способности этих соединений. В отличие от многих других фосфоресцирующих соединений, германаты циркония и гафния имеют высокую плотность, что позволяет использовать их в рентгенографических медицинских исследованиях для получения более контрастных снимков, что особенно ценно, например, для маммографии.

Источники информации

1. J.Lefevre. Phases de type fluorine dans les systemes a base de zircone. Ann.Chim., t.8, 1963, n. 1-2, p.129-135.

2. P.M.Lambert. Hafnium Germanate from a Hydrous Germanium Oxide Gel. Inorg. Chem., 1998, V.37, p.1352-1357.

3. J.Balencie, L.Levy, J.-F.Hochepied. Synthesis of hafnium germinate (HfGe04) particles: Impact of crystallization route on X/UV conversation properties. Mater. Chem. Phys., 2008, v.112, p.546-550.

4. А.В.Уткин, H.В.Булина, И.В.Беленькая, Н.И.Бакланова. "Фазовый анализ системы ZrO2-GeO2". Неорган. материалы, 2012, Т.48, №6, с.694-699.

5. Utkin AV, Prokip VE., Baklanova N1. "Composition and microstructure of zirconium and hafnium germanates obtained by different chemical routes". J.Solid State Chem. 2014, V. 209, p.89-96.

6. E.К.Казенас, Ю.В.Цветков. Испарение оксидов. - М.: Наука, 1997. - 543 с.

Похожие патенты RU2564363C1

название год авторы номер документа
Способ получения германата висмута BiGeO 2018
  • Бермешев Тимофей Владимирович
  • Жереб Владимир Павлович
RU2687924C1
Способ получения субмикронного порошка альфа-оксида алюминия 2016
  • Карагедов Гарегин Раймондович
  • Мызь Артем Леонидович
RU2625104C1
Способ получения активированного порошка металлического иридия 2020
  • Банных Денис Андреевич
  • Голосов Михаил Алексеевич
  • Лозанов Виктор Васильевич
  • Бакланова Наталия Ивановна
RU2748155C1
Способ получения порошка гафната диспрозия для поглощающих элементов ядерного реактора 2016
  • Еремеева Жанна Владимировна
  • Мякишева Лариса Васильевна
  • Панов Владимир Сергеевич
  • Лопатин Владимир Юрьевич
  • Пацера Евгений Александрович
  • Сидоренко Дарья Александровна
  • Непапушев Андрей Александрович
RU2679822C2
СПОСОБ ПОЛУЧЕНИЯ ГЕРМАНАТА ВИСМУТА BiGeO 2017
  • Бермешев Тимофей Владимирович
  • Жереб Владимир Павлович
RU2654946C1
СПОСОБ ПОЛУЧЕНИЯ ПОРОШКА ТИТАНАТА ДИСПРОЗИЯ ДЛЯ ПОГЛОЩАЮЩИХ ЭЛЕМЕНТОВ ЯДЕРНОГО РЕАКТОРА 2015
  • Панов Владимир Сергеевич
  • Еремеева Жанна Владимировна
  • Мякишева Лариса Васильевна
  • Московских Дмитрий Олегович
  • Непапушев Андрей Александрович
  • Росляков Сергей Игоревич
RU2590887C1
СЫРЬЕВАЯ СМЕСЬ ДЛЯ ПОЛУЧЕНИЯ ТЕРМОСТОЙКИХ НЕОРГАНИЧЕСКИХ ПИГМЕНТОВ, СПОСОБ ПОЛУЧЕНИЯ ТЕРМОСТОЙКИХ НЕОРГАНИЧЕСКИХ ПИГМЕНТОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2009
  • Щипицын Альберт Львович
RU2418830C1
СПОСОБ ПОЛУЧЕНИЯ ПЛОТНОЙ НАНОКЕРАМИКИ НА ОСНОВЕ ОКСИДА АЛЮМИНИЯ В СИСТЕМЕ AlO-ZrO(YO) 2018
  • Морозова Людмила Викторовна
RU2685604C1
СПОСОБ ПОЛУЧЕНИЯ НАНОКРИСТАЛЛИЧЕСКИХ ПОРОШКОВ И КЕРАМИЧЕСКИХ МАТЕРИАЛОВ НА ОСНОВЕ СМЕШАННЫХ ОКСИДОВ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ И МЕТАЛЛОВ ПОДГРУППЫ IVB 2011
  • Попов Виктор Владимирович
  • Петрунин Вадим Федорович
  • Коровин Сергей Александрович
RU2467983C1
СПОСОБ ПОЛУЧЕНИЯ ГЕРМАНАТА ВИСМУТА BiGeO 2017
  • Бермешев Тимофей Владимирович
  • Жереб Владимир Павлович
RU2636090C1

Иллюстрации к изобретению RU 2 564 363 C1

Реферат патента 2015 года СПОСОБ ПОЛУЧЕНИЯ ПОРОШКОВОГО МАТЕРИАЛА НА ОСНОВЕ ТУГОПЛАВКИХ МЕТАЛЛОВ

Изобретение относится к способам получения порошковых материалов на основе германатов тугоплавких металлов, а именно циркония и гафния, которые могут быть использованы в качестве компонентов термостойких керамических изделий и люминофоров. Исходные диоксид германия и диоксид циркония или гафния смешивают в стехиометрическом соотношении и подвергают механохимической активации в шаровой планетарной мельнице, футерованной диоксидом циркония, мелющими шарами из диоксида циркония с ускорением мелющих шаров 30g при загрузке мелющих шаров не менее 6 г/г обрабатываемых диоксидов, в течение 30-60 мин, а прокаливание проводят при температуре 1200°С в течение не менее 6 часов. Изобретение обеспечивает повышение выхода получаемых оксидов за счет устранения потерь диоксида германия из-за его высокой летучести при температуре выше 1200°С, а также получение германатов тугоплавких металлов в точном соответствии со стехиометрией, что способствует сохранению люминесцентных свойств получаемых оксидов. 2 ил., 1 табл., 8 пр.

Формула изобретения RU 2 564 363 C1

Способ получения порошкового материала на основе германатов тугоплавких металлов, включающий смешение исходных диоксида германия и диоксида циркония или гафния и прокаливание, отличающийся тем, что исходные диоксиды смешивают в стехиометрическом соотношении и подвергают механохимической активации в шаровой планетарной мельнице, футерованной диоксидом циркония, мелющими шарами из диоксида циркония с ускорением мелющих шаров 30 g при загрузке мелющих шаров не менее 6 г/г обрабатываемых диоксидов, в течение 30-60 мин, а прокаливание проводят при температуре 1200°С в течение не менее 6 часов.

Документы, цитированные в отчете о поиске Патент 2015 года RU2564363C1

А.В.УТКИН, Н.В.БУЛИНА, И.В.БЕЛЕНЬКАЯ, Н.И.БАКЛАНОВА
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
НЕОРГАН
МАТЕРИАЛЫ, 2012, Т.48, N6, С
Аппарат для приготовления суперфосфата 1922
  • Амосов П.Н.
SU694A1
UTKIN AV, PROKIP VE., BAKLANOVA NI
"COMPOSITION AND MICROSTRUCTURE OF ZIRCONIUM AND HAFNIUM GERMANATES OBTAINED BY DIFFERENT CHEMICAL ROUTES"
J.SOLID STATE CHEM
Способ защиты переносных электрических установок от опасностей, связанных с заземлением одной из фаз 1924
  • Подольский Л.П.
SU2014A1
Парный рычажный домкрат 1919
  • Устоев С.Г.
SU209A1
Способ размножения копий рисунков, текста и т.п. 1921
  • Левенц М.А.
SU89A1
СПОСОБ ПОЛУЧЕНИЯ ОГНЕУПОРНОГО КЕРАМИЧЕСКОГО МАТЕРИАЛА НА ОСНОВЕ ЦИРКОНА 2009
  • Анциферов Владимир Никитович
  • Кульметьева Валентина Борисовна
  • Порозова Светлана Евгеньевна
  • Красный Борис Лазаревич
  • Красный Александр Борисович
  • Тарасовский Вадим Павлович
RU2399600C1
ТЕРМОСТОЙКАЯ СИСТЕМА ТЕПЛОЗАЩИТЫ ПОВЕРХНОСТИ ГИПЕРЗВУКОВЫХ ЛЕТАТЕЛЬНЫХ И ВОЗВРАЩАЕМЫХ КОСМИЧЕСКИХ АППАРАТОВ 2012
  • Бакланова Наталья Ивановна
  • Уткин Алексей Владимирович
RU2509040C2

RU 2 564 363 C1

Авторы

Прокип Владислав Эдвардович

Уткин Алексей Владимирович

Михеев Александр Николаевич

Бакланов Наталья Ивановна

Даты

2015-09-27Публикация

2014-05-22Подача