СПОСОБ ОПРЕДЕЛЕНИЯ СТРУКТУРЫ МОЛЕКУЛЯРНЫХ КРИСТАЛЛОВ Российский патент 2015 года по МПК G01N23/20 

Описание патента на изобретение RU2566399C1

Изобретение относится к области физики, где изучаются вопросы определения параметров кристаллической структуры и структуры молекул, молекулярных кристаллов поликристаллических и порошкообразных материалов методом дифракции рентгеновских лучей.

Известно устройство моделирования условий дифракции, состоящее из системы измерения дифракции рентгеновских лучей и системы анализа кристаллов, где упоминается способ анализа кристаллов с определением структуры и независимых координат атомов (см. патент Японии №2000039409, опубл.2000; МПК G01N 23/20).

Сущность способа заключается в последовательной регистрации данных интенсивности и углах рассеянного рентгеновского излучения по трем угловым направлениям ω, χ, φ и записи данных в виде матриц ориентации кристалла. Устройство для регистрации отраженного излучения по Бреггу содержит измерительное устройство, средство ввода ориентации кристалла и постоянной решетки, компьютер для расчета матриц. Однако данное изобретение направлено на анализ монокристаллических образцов со значительными размерами до 0,5 мм.

Известен способ определения кристаллической и молекулярной структуры, метод Лауэ (Китайгородский А.И. Рентгеноструктурный анализ. М.-Л.: ГИТТЛ, 1950. - С.295-322), в котором на неподвижный монокристаллический образец воздействуют сплошным спектром рентгеновского излучения, регистрируют дифракционную картину, осуществляют обработку рентгенограмм и определяют ориентировку кристалла, симметрию кристалла, некоторые дефекты структуры, молекулярную структуру путем уточнения электронной плотности отражений (рефлексов). При этом минимальный размер исследуемого образца - качественного монокристалла должен быть не менее 0,1-0,5 мм.

Так же известен способ, в котором используют вращающийся монокристалл (Китайгородский А.И. Рентгеноструктурный анализ. М.-Л.: ГИТТЛ, 1950. - С.323-383), воздействуют монохроматическими лучами рентгеновского излучения на вращающийся монокристалл, регистрируют спектр, осуществляют обработку рентгенограмм и определение структуры кристалла и молекулярной структуры. При этом минимальный размер исследуемого образца - качественного монокристалла должен быть не менее 0,1-0,5 мм.

К недостаткам предложенных способов можно отнести отсутствие возможности полной дескрипции молекул, а для определения кристаллической структуры требуется выращивание качественных монокристаллов значительных размеров не менее 0,1-0,5 мм.

Наиболее близким и выбранным в качестве прототипа является способ (Чернышев В.В. Определение молекулярных кристаллических структур методами порошковой дифракции: дис. … д-ра физ.-мат. наук: 02.00.04 / Чернышев Владимир Васильевич. М., 2004. - С.6, 23, 24), включающий подготовку поликристаллического или порошкообразного материала, воздействие на него монохроматического рентгеновского излучения, регистрацию дифракционной картины, определение угловых положений центров тяжести (Θ) всех линий, индицирование полученной картины, определение параметров элементарной ячейки и пространственной группы, разложение полученной дифракционной картины на сумму интегральных интенсивностей, поиск структуры путем минимизации энергии упаковки расчетными методами, определение параметров структуры и построение теоретической дифракционной картины, сравнение полученной теоретической рентгенограммы с экспериментальной и уточнение структуры методом Ритвельда.

Недостатком известного способа является наличие большого количества теоретических расчетов с минимизацией энергии упаковки, требующих больших затрат времени. Необходимо наличие известной конфигурации геометрии молекулы или молекулярного фрагмента. Относительно невысокая точность из-за накопления ошибки в процессе расчетов и вероятностного подхода к определению упаковки.

Задачей настоящего изобретения является создание способа и алгоритма, обеспечивающего проведение анализа как молекулярной, так и кристаллической структуры поликристаллических образцов и порошкообразных материалов.

Поставленная задача решена и технический результат достигнут благодаря тому, что в способе определения структуры молекулярных кристаллов, включающем подготовку поликристаллического или порошкообразного материала, воздействие на него монохроматического рентгеновского излучения, регистрацию дифракционной картины, определение угловых положений центров тяжести (Θ) всех линий, индицирование полученной картины, определение параметров элементарной ячейки и пространственной группы, разложение полученной дифракционной картины на сумму интегральных интенсивностей, поиск структуры путем построения узловой сетки и определения геометрии молекулы расчетными методами, определение параметров структуры и построение теоретической дифракционной картины, сравнение полученной теоретической рентгенограммы с экспериментальной и уточнение структуры, например методом WPPM, согласно изобретению определение положения атомов в молекулярном кристалле осуществляется построением узловой сетки и анализом наиболее вероятных точек положения атомов по формулам:

, где

n - это вектор нормали (hkl), r - вектор направления (радиус-вектор), p - некоторая плоскость пространства, и дискретным уточнением различных структурных факторов и электронной плотности в каждой точке полученной узловой сетки с оценкой вероятности.

Технический результат заключается в том, что удалось избежать сложную операцию пробоподготовки, а именно выращивание монокристаллов; сократить затраты времени на теоретические расчеты для определения основных характеристик структуры: длины связей, величины валентных углов, постоянные решетки, дефекты структуры и т.д., а также квантово-химических дескрипторов, величины которых соответствуют и (или) пропорциональны реальным за счет последовательного определения характеристик структуры: построении сетки и узловых точек, определения координат узловых точек сетки и уточнения электронной плотности в них с соотнесением атомов с соответствующими показателями, пространственной геометрии молекул, построения кристаллической решетки вещества, что позволило уточнить величины микродеформаций, размеров кристаллитов (зерен), остаточных напряжений. Минимальный размер структурного элемента (зерна, кристаллика), для достижения высокой точности определения характеристик материала, равен 20-30 нм. Для монокристального анализа требуется 250 мкм, что в 10000 раз больше.

Наличие в заявляемом изобретении признаков, отличающих его от прототипа, позволяет считать его соответствующим условию «новизна».

Новые признаки способа определения структуры молекулярных кристаллов (определение положения атомов в молекулярном кристалле) осуществляются построением узловой сетки и анализом наиболее вероятных точек положения атомов по формулам:

, где

n - это вектор нормали (hkl), r - вектор направления (радиус-вектор), p - некоторая плоскость пространства, и дискретным уточнением различных структурных факторов и электронной плотности в каждой точке полученной узловой сетки с оценкой вероятности, не выявлены в технических решениях аналогичного назначения. На этом основании можно сделать вывод о соответствии заявляемого изобретения условию «изобретательский уровень».

Предлагаемое изобретение проиллюстрировано следующими чертежами:

на фиг.1 - схема алгоритма действий при решении задачи определения структуры молекулярного кристалла;

на фиг.2 - схема съемки рентгенограмм при фокусировке по Бреггу-Брентано;

на фиг.3 - схема съемки рентгенограмм при фокусировке по Зееману-Болину;

на фиг.4 - дифракционная картина рассеяния рентгеновского излучения на примере молекулярного кристалла триаминотринитробензола;

на фиг.5 - полученная структура и геометрия молекулы триаминтринитробензола;

на фиг.6 - окончательный результат расчета структуры молекулярного кристалла триаминтринитробензола;

на фиг.7 - теоретическая картина дифракции рентгеновских лучей на молекулярном кристалле триаминотринитробензола.

На чертежах введены следующие обозначения:

O - порошкообразный или поликристаллический образец;

F - источник рентгеновского излучения;

D - детектор;

С - щель Соллера;

Θ - угол (падения) отражения рентгеновского излучения;

I - интенсивность отраженного рентгеновского излучения.

Способ определения структуры молекулярных кристаллов (фиг.1) реализуется следующим образом: на подготовленный для анализа поликристаллический или порошкообразный материал О воздействуют монохроматическим рентгеновским излучением из источника F (луч может быть как параллельным, так и расходящимся) (фиг.2, фиг.3), регистрируют дифракционную картину (фиг.4) отраженных рентгеновских лучей, прошедших через щель Соллера С, с помощью детектора D, определяют угловые положения центров тяжести (Θ) всех линий спектра с помощью общепринятых алгоритмов, производят индицирование полученной картины, затем определяют параметры элементарной ячейки и пространственную группу, раскладывают полученную дифракционную картину на сумму интегральных интенсивностей и осуществляют поиск структуры путем построения узловой сетки, наиболее вероятного положение атомов, по формулам:

где n - это вектор нормали (hkl), r - вектор направления (радиус-вектор), p - некоторая плоскость пространства.

Далее определяют наиболее вероятные положения атомов в молекулярном кристалле и выполняют оптимизацию геометрии молекулы (фиг.5) по формулам Шредингера и Дирака, с привязкой к построенной сетке:

где Ĥ - гамильтониан, Ψ - волновая функция, m - масса электрона, c - скорость света, pj=-iħ∂j - три оператора компонент импульса (по x, y, z), ħ=h/2π, h - постоянная Планка, x=(x, y, z) и t пространственные координаты и время соответственно, и Ψ(x, t) - четырехкомпонентная комплексная волновая функция (биспинор), α0, α1, α2, α3 - линейные операторы над пространством биспиноров, которые действуют на волновую функцию.

Затем производят определение параметров структуры и теоретической дифракционной картины фиг.7, сопоставляют теоретическую картину фиг.7 с полученной экспериментальным путем фиг.4, уточняют структуру, например методом WPPM, конечный результат расчета представлен на фиг.6.

Поиск оптимальной геометрии молекулы и молекулярных дескрипторов производится методами квантовой химии, например AM1, где входными данными являются определенные ранее наиболее вероятные положения атомов, с дискретным уточнением различных структурных факторов и электронной плотности в каждой точке полученной узловой сетки с оценкой вероятности.

Уравнение плоскости для общего случая отражения рентгеновского излучения от кристаллического образца запишется как:

r ¯ i j n ¯ i j = p ¯ i j , пересечение двух плоскостей отражения дает прямую конечной длины в объеме ячейки, а минимальное количество отражающих плоскостей, пересекающихся в некоторой точке М (x, y, z), равно 3, вероятность нахождения атома в которой, с учетом систематических погасаний, стремится к 1.

Таким образом, наиболее вероятное положение атомов в структуре ячейки определится по формулам:

где n - это вектор нормали (hkl), r - вектор направления электромагнитного излучения (радиус-вектор ЭМИ), p - некоторая плоскость пространства.

Т.к. атом имеет свое положение в структуре молекулы и ячейки, а на дифракционном спектре вносит вклад в отражение от нескольких плоскостей, пересечение которых дают некоторую точку, наиболее вероятного его нахождения, то его отражательная способность будет зависеть от его координат и соответственно вносить определенный вклад в интерференционную картину, т.е. рентгеновский спектр, которая учитывается особым образом как дополнительный параметр суммы интегральных интенсивностей G. Исходя из распределения электронной плотности в ячейке и оптимизации геометрии расчетными методами устанавливают взаимосвязь между построенной узловой сеткой и положением атомов в молекулярном кристалле. Т.е. зависимость спектральных характеристик исследуемого поликристаллического или порошкообразного вещества от его молекулярного и кристаллического строения.

В случае получения удовлетворительных результатов на первой и (или) второй стадиях (фиг.1) осуществляется переход на четвертую стадию, в случае не удовлетворительного результата анализа, ошибка более 10%, осуществляется возврат к третьей, четвертой и пятой стадиям.

Данный способ в лабораторных условиях подтвердил свою применимость на примере молекулярного кристалла триаминотринитробензола. Осуществляют подготовку пробы поликристаллического или порошкообразного материала триаминотринитробензола, воздействие на него монохроматического рентгеновского излучения и регистрацию дифракционного спектра рентгеновских лучей (фиг.4) при фокусировке по Бреггу-Брентано (фиг.2) или Зееману-Болину (фиг.3). Затем, используя алгоритм анализа полученной картины (фиг.1), восстанавливается молекулярная структура исследуемого вещества:

- на первой стадии производится индицирование рентгенограммы и определение индексов Миллера плоскостей отражения hkl, исходя из положения рефлексов (величины Θ или d) на рентгенограмме по одному из общепринятых подходов индицирования рентгенограмм для определенной кристаллографической системы из общего соотношения 1/d2=X, где X - аддитивная составляющая компонентов; в таблице 1 приведены формулы для расчета параметров ячейки и индицирования рентгенограмм.

Анализ рентгенограммы триаминотринитробензола (фиг.4) показал, что он относится к триклинной кристаллографической системе. Результат индицирования, по соответствующей формуле из таблицы 1, приведен в таблице 2.

Далее определяем параметры ячейки триаминотринитробензола:

а=9,011(5) Å; b=9,029(7) Å; с=6,817(4) Å; α=108,79°; β=91,74°; γ=119,92°; V=442,59 Å3.

- на второй стадии анализа производится определение общей узловой сетки с промежуточными и концевыми значениями, с определением независимых координат узловых точек исходя из геометрического построения совокупности плоскостей, соответствующих дифракционных максимумов по формулам:

где n - это вектор нормали (hkl), r - вектор направления (радиус-вектор), p - некоторая плоскость пространства.

Общее количество плоскостей отражения по итогам первой и второй стадий равно 179. Количество анализируемых узловых точек 91.

- на третьей стадии производится уточнение электронной плотности путем определения и решения функции непрерывного распределения электронной плотности ρ(x) в узлах с определением элементов в решетке исходя из общих представлений квантовой химии;

- на четвертой стадии, на основе квантово-химического моделирования молекулярной структуры по формулам:

например методом AMI, производится анализ молекулярных орбиталей и построение геометрии молекулы триаминотринитробензола (фиг.5) с привязкой к полученной сетке;

- на пятой стадии производится построение кристаллической решетки триаминотринитробензола (фиг.6) исходя из данных, полученных на первой и четвертой стадиях, и уточнение общей симметрии кристалла исходя из анализа систематических погасаний на основе данных, полученных на второй стадии, с оценкой ошибок и сопоставление полученных результатов с картиной распределения электронной плотности в образце полученной на третьей стадии;

- на шестой стадии производится расчет теоретической картины дифракции рентгеновских лучей на образце триаминотринитробензола определенной структуры в необходимом, но максимально возможном диапазоне 20 (фиг.7), и сопоставление с полученной картиной дифракции на поликристаллическом или порошкообразном образце, производится уточнение структуры, например методом WPPM;

- на седьмой стадии производится оценка их соответствия и делается общий вывод с определением R-фактора дифракционной картины триаминотринитробензола R=4,7.

Допустимое максимальное расхождение между полученными дифрактограммами не должно превышать 5-7%. Причем картина, полученная теоретическим определением, должна быть несколько богаче, из-за наличия эффектов погасания в реальном образце. Визуальное несоответствие интенсивности рефлексов, наблюдаемых на теоретической и экспериментальной картине, - следствие влияния размерных и мезоструктурных параметров реального материала на его спектральные характеристики. Их учет проводится в дальнейшем при уточнении структуры и смещения координат атомов, определения микроискажений, плотности, дефектности, микронапряжений с применением подходов полнопрофильного анализа дифракционного спектра рентгеновского излучения, например методом WPPM.

Предложенное техническое решение позволило избежать сложную операцию пробоподготовки, а именно выращивание монокристаллов; сократить затраты времени на теоретические расчеты для определения основных характеристик структуры: длины связей, величины валентных углов, постоянные решетки, дефекты структуры и т.д., а также квантово-химических дескрипторов, величины которых соответствуют и (или) пропорциональны реальным. Кроме того, заявляемое техническое решение позволило распознавать формулу молекулы, ее структуру и предсказывать наличие полиморфных модификаций.

Для заявленного изобретения в том виде, как оно охарактеризовано в формуле изобретения, подтверждена возможность осуществления способа определения структуры молекулярных кристаллов и способность обеспечения усматриваемого заявителем технического результата. Следовательно, заявленное изобретение соответствует условию «промышленная применимость».

Похожие патенты RU2566399C1

название год авторы номер документа
СПОСОБ ВЫЯВЛЕНИЯ РАЗЛИЧИЙ СТРУКТУРНОГО СОСТОЯНИЯ ЦЕЛЛЮЛОЗЫ 2013
  • Алешина Людмила Александровна
  • Мелех Наталья Валерьевна
  • Фролова Светлана Валерьевна
RU2570092C2
Способ рентгеновского дифрактометрического анализа поликристаллических объектов с аксиальной текстурой 1982
  • Кринари Георгий Александрович
  • Халитов Зуфар Яхьич
  • Евграфов Александр Андреевич
  • Григорьев Юрий Сергеевич
SU1062579A1
СПОСОБ РЕНТГЕНОСТРУКТУРНОГО АНАЛИЗА 1998
  • Славов В.И.
  • Наумова О.М.
  • Яковлева Т.П.
RU2142623C1
Способ определения генетической группы доломита 1982
  • Мандрикова Нина Тимофеевна
  • Перозио Галина Николаевна
SU1130782A1
КРИСТАЛЛИЧЕСКИЕ СОЕДИНЕНИЯ 2016
  • Маккинни, Энтони Александр
  • Баймастер, Франклин
  • Пискорски, Уолтер
  • Флиц, Фрэд Дж.
  • Ян, Юнлай
  • Энджерс, Дэвид А.
  • Смоленская, Валерия
  • Кусукунтла, Венкат
RU2789672C2
Способ определения пространственной структуры биомолекул 2020
  • Морячков Роман Владимирович
  • Слатинская Ольга Вадимовна
  • Щугорева Ирина Андреевна
  • Заблуда Владимир Николаевич
  • Соколов Алексей Эдуардович
RU2751797C1
Способ определения остаточных неоднородных напряжений в анизотропных электротехнических материалах рентгеновским методом 2017
  • Пудов Владимир Иванович
  • Драгошанский Юрий Николаевич
RU2663415C1
Станнат-ванадат висмута и способ его получения 1983
  • Алексанян Оваким Арменакович
  • Савченко Лилия Митрофановна
  • Осипян Валентин Георгиевич
  • Костанян Костан Артаваздович
SU1155630A1
Способ рентгеновского дифрактометрического анализа поликристаллических материалов с аксиальной текстурой 1987
  • Гирин Олег Борисович
SU1509697A1
КЕРАМИЧЕСКИЙ ЛАЗЕРНЫЙ МИКРОСТРУКТУРИРОВАННЫЙ МАТЕРИАЛ С ДВОЙНИКОВОЙ НАНОСТРУКТУРОЙ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2007
  • Басиев Тасолтан Тазретович
  • Осико Вячеслав Васильевич
  • Конюшкин Василий Андреевич
  • Федоров Павел Павлович
  • Кузнецов Сергей Викторович
  • Дорошенко Максим Евгеньевич
RU2358045C2

Иллюстрации к изобретению RU 2 566 399 C1

Реферат патента 2015 года СПОСОБ ОПРЕДЕЛЕНИЯ СТРУКТУРЫ МОЛЕКУЛЯРНЫХ КРИСТАЛЛОВ

Использование: для определения структуры молекулярных кристаллов. Сущность изобретения заключается в том, что выполняют подготовку поликристаллического или порошкообразного материала, воздействуют на него монохроматическим рентгеновским излучением, региструют дифракционную картину, определяют угловые положения центров тяжести всех линий, осуществляют индицирование полученной картины, определяют параметры элементарной ячейки и пространственной группы, выполняют разложение полученной дифракционной картины на сумму интегральных интенсивностей, производят поиск структуры путем построения узловой сетки и определяют геометрию молекулы расчетными методами, определяют параметры структуры и выполняют построение теоретической дифракционной картины, сравнивают полученную теоретическую рентгенограмму с экспериментальной и уточняют структуру, при этом определение положения атомов в молекулярном кристалле осуществляется построением узловой сетки и анализом наиболее вероятных точек положения атомов по определенным формулам и дискретным уточнением различных структурных факторов и электронной плотности в каждой точке полученной узловой сетки с оценкой вероятности. Технический результат: обеспечение возможности проведения анализа как молекулярной, так и кристаллической структуры поликристаллических образцов и порошкообразных материалов без проведения сложной операции пробоподготовки и без проведения большого количества теоретических расчетов для определения основных характеристик структуры. 7 ил.

Формула изобретения RU 2 566 399 C1

Способ определения структуры молекулярных кристаллов, включающий подготовку поликристаллического или порошкообразного материала, воздействие на него монохроматического рентгеновского излучения, регистрацию дифракционной картины, определение угловых положений центров тяжести (Θ) всех линий, индицирование полученной картины, определение параметров элементарной ячейки и пространственной группы, разложение полученной дифракционной картины на сумму интегральных интенсивностей, поиск структуры путем построения узловой сетки и определения геометрии молекулы расчетными методами, определение параметров структуры и построение теоретической дифракционной картины, сравнение полученной теоретической рентгенограммы с экспериментальной и уточнение структуры, отличающийся тем, что определение положения атомов в молекулярном кристалле осуществляется построением узловой сетки и анализом наиболее вероятных точек положения атомов по формулам:

, где


n - это вектор нормали (hkl), r - вектор направления (радиус-вектор), p - некоторая плоскость пространства, и дискретным уточнением различных структурных факторов и электронной плотности в каждой точке полученной узловой сетки с оценкой вероятности.

Документы, цитированные в отчете о поиске Патент 2015 года RU2566399C1

Чернышев В.В., Определение молекулярных кристаллических структур методами порошковой дифракции, дис
д-ра физ.-мат
наук, М., 2004, с
Приспособление для точного наложения листов бумаги при снятии оттисков 1922
  • Асафов Н.И.
SU6A1
Установка для дифрактометрического исследования реальной структуры кристаллов с использованием синхротронного излучения 1985
  • Алешко-Ожевский О.П.
  • Головинов В.Н.
  • Шишков В.А.
  • Коряшкин В.И.
SU1334924A1
Способ определения структурных характеристик монокристаллов 1983
  • Афанасьев Александр Михайлович
  • Бугров Дмитрий Анатольевич
  • Имамов Рафик Мамед Оглы
  • Маслов Андрей Викторович
  • Пашаев Эльхон Мехрали Оглы
  • Шилин Юрий Николаевич
SU1133519A1
Способ исследования структурного совершенства монокристаллов 1986
  • Казимиров Александр Юрьевич
  • Ковальчук Михаил Валентинович
  • Чуховский Феликс Николаевич
SU1402873A1
JP 2009044083A, 26.02.2009
JP 2013174524A, 05.09.2013

RU 2 566 399 C1

Авторы

Костицын Олег Владимирович

Станкевич Александр Васильевич

Тайбинов Николай Петрович

Даты

2015-10-27Публикация

2014-04-17Подача