СПОСОБ ПОЛУЧЕНИЯ КАРБИДА ЦИРКОНИЯ Российский патент 2015 года по МПК C01B31/30 C01G25/00 B82B1/00 

Описание патента на изобретение RU2566420C1

Предлагаемое изобретение относится к порошковой металлургии, в частности к синтезу карбида циркония, и может быть использовано при изготовлении огнеупорных тиглей, элементов высокотемпературных вакуумных и газонаполненных электропечей, полирующего материала и катализатора для каталитических процессов.

Известен способ получения карбида циркония (В.Я. Науменко. Получение карбидов переходных металлов IV-V групп в областях их гомогенности. Порошковая металлургия, 1970, №10, с. 20-22), заключающийся в перемешивании шихты из порошков циркония и ацетиленовой сажи в течение 2-3 часов с последующим синтезом при давлении ниже атмосферного (1,2·10-4 мм рт.ст.).

Однако указанный способ имеет недостатки. Это применение при синтезе карбида циркония дорогого порошкообразного циркония, длительность перемешивания шихты (2-3 часа), проведение синтеза при давлении ниже атмосферного (что усложняет процесс).

Кроме того, известен способ (Р.Г. Шумилова, Т.Я. Косолапова. Получение карбида циркония в полупромышленном масштабе. Порошковая металлургия, 1968, №4, с. 86-89), являющийся прототипом предлагаемого изобретения и заключающийся в протирании через сито шихты стехиометрического состава из двуокиси циркония и углеродного материала (сажи марки ТМ-50 по ГОСТ 7885-63) с последующим нагревом в печи сопротивления с графитовой трубкой при температуре 2200°C с выдержкой при этой температуре 60 минут.

Однако указанный способ имеет недостаток. Это проведение процесса карбидообразования при сравнительно высокой температуре (2200°C) и с выдержкой при этой температуре в течение сравнительно длительного времени (60 минут), что приводит к значительным энергозатратам. Этот недостаток связан с применением сажи марки ТМ-50. Сажа марки ТМ-50 в настоящее время не выпускается. Однако известно, что ее удельная поверхность находилась на сравнительно невысоком - уровне 50 м2/г (ГОСТ 7885-63).

Задачей предлагаемого изобретения является уменьшение энергозатрат при получении карбида циркония.

Поставленная задача достигается тем, что в известном способе получения карбида циркония, заключающемся в протирании через сито шихты стехиометрического состава из двуокиси циркония и углеродного материала, нагрев шихты производят при температуре 1800…1900°C с выдержкой при этой температуре в течение 20…25 минут, при этом удельная поверхность углеродного материала составляет 138…160 м2/г, а в качестве углеродного материала используют нановолокнистый углерод.

Способ осуществляется следующим образом. Шихта стехиометрического состава готовится из навесок порошков двуокиси циркония и углеродного материала (нановолокнистого углерода), взятых в соответствии с реакцией:

ZrO2+3С=ZrC+2СО.

Полученная шихта протирается через сито с размером ячейки 100 мкм. После этого шихта загружается в графитовый тигель внутренним диаметром 50 мм и высотой внутреннего пространства 40 мм. Тогда внутренний объем тигля 78,5 см3. Масса загружаемой в тигель шихты составляет 200…250 граммов. Тигель закрывается графитовой крышкой и помещается в печь сопротивления с графитовой трубкой. Далее включается электропитание печи. При разогреве графитовой трубки в печном пространстве происходит следующее. Поскольку в печное пространство не подается защитный газ (аргон или водород), в нем первоначально находится воздух. От разогретой графитовой трубки тепло передается стенке тигля, а от нее - шихте. Естественно, кислородом воздуха окисляется углерод более нагретой графитовой трубки. Поэтому в печном пространстве образуется газовая смесь оставшегося азота и монооксида углерода СО. Измерение температуры в печном пространстве осуществляется оптическим пирометром. Поддержание заданной температуры (1800…1900°C) в течение 20…25 минут осуществляется изменением токовой нагрузки. После проведения процесса подача электроэнергии прекращается и печь охлаждается. Затем из охлажденной печи извлекается тигель с порошкообразным продуктом реакции - карбидом циркония.

При температурах ниже 1800°C карбид циркония не образуется, о чем свидетельствует отсутствие его рефлексов на дифрактограммах. При температурах, превышающих 1900°C, имеют место непроизводительные энергозатраты. При времени процесса менее 20 минут карбид циркония не образуется, о чем свидетельствует отсутствие его рефлексов на дифрактограммах. При времени процесса более 25 минут имеют место непроизводительные энергозатраты. При уменьшении величины удельной поверхности порошка нановолокнистого углерода ниже 138 м2/г времени 20…25 минут и температуры 1800…1900°C оказывается недостаточно для полного завершения процесса образования карбида циркония, о чем свидетельствует наличие на дифрактограммах рефлексов исходного реагента - двуокиси циркония. Увеличение значения удельной поверхности порошка нановолокнистого углерода выше 160 м2/г невозможно при любом времени измельчения.

Примеры реализации изобретения

Пример 1. Порошки двуокиси циркония (184,5 грамма) и нановолокнистого углерода (54 грамма) с удельной поверхностью 144 м2/г протираются через сито с размером ячейки 100 мкм. После этого готовая шихта массой 238,5 граммов засыпается в графитовый тигель. Тигель закрывается графитовой крышкой и помещается в печь сопротивления с графитовой трубкой. Далее включается электропитание печи. Температура процесса 1850°C, время выдержки при этой температуре 22 минуты. Рентгенофазовым анализом установлено наличие в продуктах реакции (термообработанной шихте) только одной фазы - карбида циркония.

Пример 2. Порошки двуокиси циркония (184,5 грамма) и нановолокнистого углерода (54 грамма) с удельной поверхностью 116 м2/г протираются через сито с размером ячейки 100 мкм. После этого готовая шихта массой 238,5 граммов засыпается в графитовый тигель. Тигель закрывается графитовой крышкой и помещается в печь сопротивления с графитовой трубкой. Далее включается электропитание печи. Температура процесса 1870°C, время выдержки при этой температуре 23 минуты. Рентгенофазовым анализом установлено наличие в продуктах реакции (термообработанной шихте) не только карбида циркония, но и исходного реагента - оксида циркония. Следовательно, процесс образования карбида циркония полностью не завершается.

Пример 3. Порошки двуокиси циркония (184,5 грамма) и нановолокнистого углерода (54 грамма) с удельной поверхностью 150 м2/г протираются через сито с размером ячейки 100 мкм. После этого готовая шихта массой 238,5 граммов засыпается в графитовый тигель. Тигель закрывается графитовой крышкой и помещается в печь сопротивления с графитовой трубкой. Далее включается электропитание печи. Температура процесса 1820°C, время выдержки при этой температуре 24 минуты.

Рентгенофазовым анализом установлено наличие в продуктах реакции (термообработанной шихте) только одной фазы - карбида циркония.

Пример 4. Порошки двуокиси циркония (184,5 грамма) и нановолокнистого углерода (54 грамма) с удельной поверхностью 150 м2/г протираются через сито с размером ячейки 100 мкм. После этого готовая шихта массой 238,5 граммов засыпается в графитовый тигель. Тигель закрывается графитовой крышкой и помещается в печь сопротивления с графитовой трубкой. Далее включается электропитание печи. Температура процесса 1890°C, время выдержки при этой температуре 22 минуты. Рентгенофазовым анализом установлено наличие в продуктах реакции (термообработанной шихте) только одной фазы - карбида циркония.

Пример 5. Порошки двуокиси циркония (184,5 грамма) и нановолокнистого углерода (54 грамма) с удельной поверхностью 146 м2/г протираются через сито с размером ячейки 100 мкм. После этого готовая шихта массой 238,5 граммов засыпается в графитовый тигель. Тигель закрывается графитовой крышкой и помещается в печь сопротивления с графитовой трубкой. Далее включается электропитание печи. Температура процесса 1770°C, время выдержки при этой температуре 23 минуты. Рентгенофазовым анализом установлено наличие в продуктах реакции (термообработанной шихте) не только карбида циркония, но и исходного реагента - оксида циркония. Следовательно, процесс образования карбида циркония полностью не завершается.

Использование в составе шихты более дисперсного, чем в прототипе, углеродного материала (нановолокнистого углерода) позволяет снизить параметры процесса синтеза карбида циркония (температуру и время) и тем самым уменьшить энергозатраты.

Похожие патенты RU2566420C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ ДИБОРИДА ЦИРКОНИЯ 2014
  • Крутский Юрий Леонидович
  • Дюкова Ксения Дмитриевна
  • Баннов Александр Георгиевич
  • Курмашов Павел Борисович
  • Соколов Владимир Васильевич
  • Пичугин Андрей Юрьевич
  • Кузнецова Валентина Викторовна
RU2559485C1
СПОСОБ ПОЛУЧЕНИЯ КАРБИДА БОРА 2013
  • Крутский Юрий Леонидович
  • Дюкова Ксения Дмитриевна
  • Баннов Александр Георгиевич
  • Курмашов Павел Борисович
  • Соколов Владимир Васильевич
  • Пичугин Андрей Юрьевич
RU2550848C2
СПОСОБ ПОЛУЧЕНИЯ ДИБОРИДА ХРОМА 2013
  • Крутский Юрий Леонидович
  • Дюкова Ксения Дмитриевна
  • Баннов Александр Георгиевич
  • Курмашов Павел Борисович
  • Соколов Владимир Васильевич
  • Пичугин Андрей Юрьевич
RU2549440C1
СПОСОБ ПОЛУЧЕНИЯ ДИБОРИДА ТИТАНА 2013
  • Крутский Юрий Леонидович
  • Антонова Елена Владимировна
  • Баннов Александр Георгиевич
  • Курмашов Павел Борисович
  • Соколов Владимир Васильевич
  • Пичугин Андрей Юрьевич
RU2559482C2
СПОСОБ ПОЛУЧЕНИЯ КАРБИДА ВАНАДИЯ 2014
  • Крутский Юрий Леонидович
  • Дюкова Ксения Дмитриевна
  • Баннов Александр Георгиевич
  • Курмашов Павел Борисович
  • Соколов Владимир Васильевич
  • Пичугин Андрей Юрьевич
  • Вязьмина Юлия Александровна
RU2599757C2
СПОСОБ ПОЛУЧЕНИЯ КАРБИДА ТИТАНА 2013
  • Крутский Юрий Леонидович
  • Антонова Елена Владимировна
  • Очков Владимир Валерианович
  • Баннов Александр Георгиевич
  • Курмашов Павел Борисович
RU2550182C2
СПОСОБ ПОЛУЧЕНИЯ ДИБОРИДА ВАНАДИЯ 2016
  • Крутский Юрий Леонидович
  • Дюкова Ксения Дмитриевна
  • Баннов Александр Георгиевич
  • Курмашов Павел Борисович
  • Крутская Татьяна Михайловна
RU2638396C2
Способ получения шихты для изготовления композиционной керамики карбид бора - диборид хрома 2022
  • Гудыма Татьяна Сергеевна
  • Крутский Юрий Леонидович
  • Сотников Александр Вадимович
  • Уткин Алексей Владимирович
RU2789828C1
Способ получения шихты для изготовления композиционной керамики карбид бора - диборид циркония 2021
  • Гудыма Татьяна Сергеевна
  • Крутский Юрий Леонидович
  • Непочатов Юрий Кондратьевич
  • Черкасова Нина Юрьевна
  • Кучумова Иванна Денисовна
  • Хабиров Роман Рафаэлович
RU2770773C1
Способ изготовления композиционной керамики карбид бора - диборид циркония 2023
  • Гудыма Татьяна Сергеевна
  • Крутский Юрий Леонидович
  • Дик Дмитрий Викторович
  • Черкасова Нина Юрьевна
  • Анисимов Александр Георгиевич
  • Курмашов Павел Борисович
  • Крутская Татьяна Михайловна
RU2812539C1

Реферат патента 2015 года СПОСОБ ПОЛУЧЕНИЯ КАРБИДА ЦИРКОНИЯ

Изобретение относится к порошковой металлургии, в частности к синтезу карбида циркония, и может быть использовано при изготовлении огнеупорных тиглей, элементов высокотемпературных вакуумных и газонаполненных электропечей, полирующего материала и катализатора для каталитических процессов. Способ состоит в протирании через сито шихты стехиометрического состава из двуокиси циркония и углеродного материала с последующим нагревом в печи сопротивления с графитовой трубкой. При этом нагрев проводят при температуре 1800-1900°C с выдержкой при этой температуре в течение 20-25 минут, удельная поверхность углеродного материала составляет 138-160 м2/г, а в качестве углеродного материала используют нановолокнистый углерод. Способ направлен на уменьшение энергозатрат при получении карбида циркония. 5 пр.

Формула изобретения RU 2 566 420 C1

Способ получения карбида циркония, состоящий в протирании через сито шихты стехиометрического состава из двуокиси циркония и углеродного материала с последующим нагревом в печи сопротивления с графитовой трубкой, отличающийся тем, что нагрев проводят при температуре 1800-1900°C с выдержкой при этой температуре в течение 20-25 минут, при этом удельная поверхность углеродного материала составляет 138-160 м2/г, а в качестве углеродного материала используют нановолокнистый углерод.

Документы, цитированные в отчете о поиске Патент 2015 года RU2566420C1

Р.Г.ШУМИЛОВА, Т.Я.КОСОЛАПОВА, "Получение карбида циркония в полупромышленном масштабе", "Порошковая металлургия", 1968, N4, стр
Пюпитр для работы на пишущих машинах 1922
  • Лавровский Д.П.
SU86A1
Способ получения тугоплавких соединений 1976
  • Долуханян С.К.
  • Григорян С.Л.
  • Мартиросян Н.А.
  • Налбандян А.Б.
  • Боровинская И.П.
  • Мержанов А.Г.
SU608303A1
СПОСОБ ПОЛУЧЕНИЯ КАРБИДОВ ЭЛЕМЕНТОВ 0
  • В. Ф. Функе, А. И. Тютюнников, Н. С. Ямсков, В. С. Макеев, А. Н. Пилюгин В. А. Шевченко
SU408905A1
ПОЛИМЕРНАЯ КОМПОЗИЦИЯ 1995
  • Симонов-Емельянов И.Д.
  • Шембель Н.Л.
  • Куклина Л.А.
RU2098353C1
US 20110171096 A1, 14.07.2011;
CN 103626179 A1, 12.03.2014

RU 2 566 420 C1

Авторы

Крутский Юрий Леонидович

Дюкова Ксения Дмитриевна

Баннов Александр Георгиевич

Курмашов Павел Борисович

Кузнецова Валентина Викторовна

Даты

2015-10-27Публикация

2014-04-29Подача