СПОСОБ ИЗГОТОВЛЕНИЯ ТОПЛИВНЫХ БРИКЕТОВ ИЗ ТВЕРДЫХ БЫТОВЫХ ОТХОДОВ (ТБО) Российский патент 2015 года по МПК C10L5/46 C10L5/00 C10L5/40 

Описание патента на изобретение RU2567861C1

Изобретение относится к области охраны окружающей среды, к возобновляемым источникам энергии, к предприятиям коммунального хозяйства, занимающихся утилизацией твердых бытовых отходов (ТБО) и других органических отходов.

К ТБО и другим органическим отходам, на которые распространяется предлагаемое изобретение, относятся продукты жизнедеятельности человека, состоящие из следующих групп: отходы бумаги и картона, пищевые отходы, отходы текстиля, отходы кож и резины, отходы полимерных изделий, неорганические отходы (стекло, бетон, керамика, песок, грунт, щебень, лом черного и цветного металлов).

ТБО характеризуются значительной фазовой и морфологической неоднородностью:

физическая вода 15…50% неорганическая субстанция 12…20% горючая масса (органическая субстанция) 38…65%

Известны более 100 Патентов РФ, выданных за последнее 20 лет, в которых предложены различные технические решения, с разной степенью эффективности, технологичности, экологической безопасности.

Среди известных технических решений наибольший интерес представляют предложения, реализующие естественный энергетический потенциал. ТБО, т.е. предложения по использованию ТБО как альтернативного, нетрадиционного топлива. Эффективность данного направления, обусловленная двумя основополагающими обстоятельствами: в результате сгорания ТБО обеспечивается самое значительное и необратимое сокращение объемов этого продукта и сгорание ТБО обеспечивает выход тепловой энергии, измеряемой от 2 до 3,5 Гкал на 1 тонну.

Если среднестатистический выход ТБО на одного человека в год 0,35 т, то в Российской Федерации ежегодно образуется примерно 50 млн т ТБО, что эквивалентно 35…38 млн т каменного угля.

Таким образом, актуальность настоящего предлагаемого изобретения очевидна.

Известен способ получения твердого топлива (RU 21342881 С1), в частности из ТБО вместе с известью, известняком, доломитом, которое после формования сушится. Недостатком известного топлива является то, что ТБО, используемые в топливе, не подвергались предварительно термической обработке и содержат различные вредные соединения, выделяющиеся при сгорании. Кроме этого минеральный компонент предлагаемого топлива (известь, известняк, доломит) не сгорает, снижает теплотворность топлива, увеличивая количество золошлака.

Известен способ переработки мусора, брикетированное топливо, присадка (RU 2109035 С1), в котором ТБО смешивают с углем и жирными добавками, например с отбеливающий землей. Массу гранулируют в топливные брикеты.

Известен способ и установка для производства твердого топлива из отходов (RU 2334786 С2), в котором твердое топливо предлагают изготавливать из сухих ТБО в смеси с эластомерным или полимерным материалом при послойном укладывании на транспортное средство, перемещающее топливо к месту сгорания.

Известен способ переработки сортированных бытовых отходов в топливные брикеты (RU 2492158 С1), включающий измельчение ТБО, смешивание измельченного материала с водой и связующими, прессование брикетов при давлении 150…200 кг/см2 с последующей сушкой при температуре 50…60°C в течение 40…90 мин.

Известен способ производства твердого топлива, изготовленного из промышленных и бытовых отходов (RU 2405027 С2), в котором топливные брикеты готовят из ТБО с добавлением извести, формируют круглые брикеты, сушат. Полученное топливо имеет калорийность около 6000 ккал/кг.

Все вышеперечисленные технические решения обладают главным недостатком - используемые ТБО не прошли термическую подготовку и содержат в своей массе значительное количество вредных соединений, выделяющихся при горении в окружающую среду. Это обстоятельство во всем мире сдерживает развитие способа утилизации ТБО прямым сжиганием в топках котлов.

Другим недостатком рассмотренных выше аналогов является использование при формовании топливных брикетов дополнительных связующих материалов.

Общим для всех перечисленных аналогов являются предварительные операции перед применением: механическая сортировка, измельчение, а при формировании гранул или брикетов использование высокого давления в форме экструзии или прессования.

В качестве прототипа выбран способ переработки ТБО в топливо для печей высокотемпературного синтеза цементного клинкера (RU 2479622 С1), включающий сортировку исходных ТБО, измельчение до фракции 50…100 мм, сушку до остаточной влажности 5…10%, вторичное измельчение до фракции 8…10 мм, нагрев измельченного сырья до температуры 160…200°C, термопластическую экструзию с получением топливных гранул.

Недостатками прототипа являются следующие:

- сложный, малоэффективный процесс сортировки в форме сухого механического рассеивания исходных ТБО;

- двойной процесс измельчения, особенно энергоемкий при измельчении сухой массы;

- низкая температура подогрева массы (160…200°C), которая способна лишь расплавить некоторые термопластические полимеры, остальная масса ТБО при температуре 160…200°C не меняет своего агрегатного состояния, не подвергается деструкции, что ограничивает более полное раскрытие потенциальных энергетических возможностей;

- топливные гранулы по прототипу имеют относительно невысокую теплотворную способность (не выше 5000 ккал/кг), при горении дымят, выделяя вредные вещества.

- ограниченная область использования топливных брикетов обусловлена необходимостью применения высоких температур для обеспечения экологической чистоты при сжигании топливных брикетов.

Целью предлагаемого изобретения является создание высокоэффективного способа получения топливных брикетов из ТБО и других органических отходов, обеспечивающего производство высококалорийного, бездымного, экологически чистого гранулированного топлива, пригодного для сжигания в любых топочных устройствах с высокими и низкими температурами горения.

Цель достигается тем, что способ получения топливных брикетов из ТБО и других органических отходов, включающий сортировку ТБО с выделением горючей массы, измельчение выделенной из ТБО горючей массы, сушку измельченного материала, подогрев измельченного материала, формирование из измельченного материала гранул, отличается тем, что сортировка исходных ТБО с выделением горючей массы осуществляется гидромеханическим способом, измельчению подвергается масса с влажностью 40…55%, подогрев массы осуществляется в интервале температур 550…1000°C, энергообеспечение производства топливных брикетов производится полностью за счет скрытой внутренней энергии горючей массы ТБО, в качестве связующего при формировании брикетов используется смолистый конденсат, выделенный из газообразных продуктов распада горючей массы, нагретой до температуры 550…1000°C.

Заявляемое изобретение поясняется следующими схемами.

На фигуре 1 представлена общая технологическая схема производства.

На фигуре 2 представлена схема материального баланса получения теплоносителя (генгаза) для пиролизной барабанной реторты.

На фигуре 3 представлена схема материального и теплового балансов узла охлаждения газовой смеси и конденсации смол, воды.

На фигуре 4 представлена общая технологическая схема производства топливных брикетов из ТБО по настоящему изобретению.

Позициями на схемах обозначены:

1. Участок гидравлической сепарации;

2. Участок резки (измельчения) горючей массы;

3. Сушильный барабан;

4. Пиролизная барабанная реторта;

5. Выносной газогенератор;

6. Теплообменник-конденсатор;

7. Холодильник;

8. Смеситель;

9. Экструдер.

Процесс получения топливных брикетов из ТБО и других органических отходов протекает в следующей последовательности.

ТБО с естественной влажностью подается на участок гидравлической сепарации 1, в результате которой разделяются органические и неорганические компоненты. Неорганические компоненты выводятся из аппарата, металлы отбирают, остальное сушат и дробят для дальнейшего использования в качестве засыпного материала.

Органическая субстанция (горючая масса) с влажностью 40…55% направляется на участок резки (измельчения) 2. В результате измельчения достигается равномерный заданный фракционный состав и снижение влажности до 22…25%. Полученный продукт называется - влажное обогащенное нетрадиционное топливо (ОНТ).

Досушка измельченного влажного ОНТ осуществляется в сушильном барабане 3 теплоносителем, полученным сжиганием неконденсирующегося газа (газообразный остаток после отбора водяного и смоляного конденсата из пирогенераторного газа).

Сухое ОНТ направляется в пиролизную барабанную реторту 4, где происходит термическая обработка при 550…1000°С. Твердый угольный остаток пиролиза ОНТ является полуфабрикатом топливных брикетов.

Часть твердого угольного остатка используется в выносном газогенераторе 5, где получают генераторный газ с температурой около 1000°С, который служит теплоносителем в пиролизной барабанной реторте 4.

Из пиролизной реторты 4 выходит газовая смесь, состоящая из пиролизного газа и генераторного газа. Газовая смесь проходит через теплообменник-конденсатор 6, охлаждаясь, вырабатывая тепловую (теплофикационную) энергию.

В результате охлаждения газовой смеси в теплообменнике-конденсаторе 6 до 30…40°С пары смол и воды, содержащиеся в газовой смеси, конденсируются и выводятся из аппарата. Оставшийся после отбора конденсата неконденсирующийся газ сжигается, полученный при этом теплоноситель используется в сушильном барабане 3 для сушки влажных ОНТ.

Охлажденный твердый угольный остаток из холодильника 7 направляется в смеситель 8, где смешивается со смолистым веществом. После гомогенизации полученная пресс-масса пропускается через экструдер 9, в котором происходит брикетирование с получением топливных брикетов.

На фигуре 1 представлена общая технологическая схема производства топливных брикетов из ТБО по настоящему изобретению.

Обоснование новизны заявленных технологических операций в предлагаемом изобретении

Гидравлическая сортировка ТБО осуществляется в потоке жидкости, двигающейся с некоторой скоростью в горизонтальных направлениях. Поскольку компоненты ТБО характеризуются различной плотностью: горючая масса (органика) - 1300…1400 кг/м3, неорганика (стекло, бетон, керамика) - 2400…2500 кг/м3, металлы (2700…8000 кг/м3), то из горизонтального жидкого потока (плотность ≈1000 кг/м3) компоненты ТБО выпадают на различном расстоянии. Только гидравлический способ разделения ТБО обеспечивает наиболее высокую чистоту отбора органических (горючих) компонентов. Присутствие неорганических включений в горючей массе после гидравлической сортировки не превышает 2% (как правило, мелкие частицы песка).

«Мокрые» процессы сортировки ТБО выгодно отличаются от «сухих», во-первых, потому что протекают с минимальным пылением, во-вторых, в жидкой субстанции растворяются остропахнущие азотные продукты гниения, что характеризует процесс гидравлической сортировки, как экологически чистый.

Резка горючей массы в водонасыщенном состоянии

Резка горючей массы, отобранной из ТБО, в водонасыщенном состоянии (W=40…55%) требует на 20…25% меньше электрической энергии, при этом уменьшается износ режущих элементов и соответственно растет рабочий ресурс оборудования.

Подогрев массы до 550…1000°C

В прототипе заявлен подогрев горючей массы до 160…200°С. Такая температура позволяет расплавиться лишь некоторым видам термопластов (полиэтилен, полистирол, полипропилен и др.), основная масса компонентов: бумага, пищевые, древесина, текстиль и др. остается в исходном недеструктурированном агрегатном состоянии, т.е. после подогрева до 160…200°C морфологический состав горючей массы остается неизменным, крайне неоднородным и при сжигании имеет место обильное выделение и неконтролируемые скачки температур пламени.

Иное происходит при нагреве горючей массы до 550…1000°C в отсутствие окислителя (кислорода).

В указанном интервале температур происходит термический распад (пиролиз) органики с выделением летучей субстанции (пиролизный газ) и твердого угольного остатка. Количество продуктов термического распада зависит от температуры пиролиза. Чем выше температура, тем меньше выход твердого угольного остатка и, наоборот, выше выход летучих. При этом от температуры пиролиза зависит состав и теплотворная способность продуктов распада.

Поясним на примере пиролиза древесины при различных температурах.

При температуре пиролиза 550°С достигается полное обугливание массы, при этом обеспечивается наибольший выход твердого угольного остатка на интервале 550…1000°C. Уменьшение температуры пиролиза (менее 550°C) сопровождается нарастанием необугленной, исходной массы вещества. Увеличение температуры выше 550°С сопровождается нарастанием доли углерода с одновременным уменьшением до нуля долей водорода и кислорода.

Выбранный температурный интервал в предлагаемом изобретении 550…1000°С обосновывается тем, что нижний предел гарантирует отсутствие в продукте необугленного вещества, а верхний предел гарантирует получение в твердом остатке чистого угля, что особенно ценно при использовании твердого остатка для получения синтез-газа.

Теплоноситель для осуществления пиролиза ТБО.

Особенностью пиролиза является нагрев органического вещества в условиях отсутствия окислителя (кислорода). Чем меньше кислорода поступает в пиролизную реторту, тем эффективнее процесс, тем чище пиролизный газ.

Обычно применяют герметичные, изолированные от окружающей среды реторты. В этом случае тепловая энергия для активации процесса пиролиза передается через стенки реторты теплопроводностью. Такой способ передачи тепла крайне не эффективен, поэтому применим только для пиролизного производства малой мощности.

При многотоннажной переработки ТБО требуется более производительный способ теплопередачи. Наиболее эффективным способом теплопередачи является конвекция в исполнении протяжки газообразного теплоносителя через слой ТБО, несколько уступает конвекция - лучистый теплообмен - в исполнении протяжки газообразного теплоносителя над слоем ТБО. Однако в обоих случаях имеются ограничения, связанные с температурой газообразного теплоносителя. Если температура пиролиза ТБО 550….600°C (наиболее выгодная для получения угольного остатка), то температура газообразного теплоносителя не должна превышать 1000°С.

Получить газообразный теплоноситель, лишенный свободного кислорода можно двояко (используя часть твердого угольного остатка): либо обеспечить полное сгорание части угольного остатка, что обеспечивает отсутствие свободного кислорода в продуктах сгорания, либо газифицировать часть твердого угольного остатка с получением генгаза. В первом случае температура продуктов сгорания твердого угольного остатка до 1500°С, поэтому перед подачей в пиролизную реторту температуру продуктов сгорания требуется снизить до требуемой 1000°С. Обычно в технических процессах «горячие» продукты сгорания охлаждают подмешиванием холодного воздуха. Реже используется способ установки на пути между топкой и пиролизной ретортой теплообменного аппарата, который снижает температуру теплоносителя от 1500°С до 1000°С за счет нагрева теплофикационной воды. Первый способ охлаждения неприемлем из-за появления в теплоносителе кислорода. Последний способ достаточно привлекательный, но в техническом отношении мало удобен (большая металлоемкость теплообменного аппарата, повышенный расход твердого угольного остатка, который является товарной продукцией процесса).

Более технико-экономически выгодным способом является получение теплоносителя для пиролизной реторты в виде воздушного генераторного газа, состоящего из СО, Н2O, N2 и некоторого количества CO2. Температура на выходе из газогенератора около 1000°C, т.е. именно то, что требуется. Кроме этого содержащийся в генгазе СО обогащает пиролизный газ, повышая его калорийность.

Связующие для получения топливных брикетов из обугленных ТБО

Сохранение брикетами ТБО формы и механической прочности после формования (экструзия) обеспечивается за счет содержания в брикетах клеящей субстанции. В одних случаях это торф, в других известь, в прототипе расплав термопластов. Вместе с тем в пиролизном газе отходящем от пиролизной реторты всегда содержатся 10…12% от общей массы газа пары смолистых веществ, которые при охлаждении пиролизного газа конденсируется в вязкую жидкость, которую предлагается использовать в качестве связующего вещества. При охлаждении пиролизного газа вместе со смолистым веществом выпадает в конденсат вода, оставшийся неконденсирующийся газ имеет достаточную теплотворную способность, чтобы тепло после окислительного дожига могло использоваться, например, на сушку ТБО перед пиролизом.

Пример практического использования изобретения

Исходные данные

В городе с населением 600 тыс. человек имеется годовой выход ТБО в количестве: 600000×0,35=210000 т (0,35 - среднестатистический выход ТБО в год на одного человека).

Средняя влажность ТБО - 40%, содержание неорганических веществ - 16%.

В результате гидромеханического обогащения из 210 тыс. т получено 127 тыс. т обогащенного нетрадиционного топлива (ОНТ) с влажностью 22% и содержанием неорганики 5%.

Фазовый состав ОНТ:

Морфологический состав горючей массы (абсолютно сухое вещество):

Химический состав 92,7 тыс. т горючей массы совместно с 6,3 тыс. т неорганики, что образует «сухое» ОНТ:

Исходя из химического состава горючей массы рассчитываем по формуле Менделеева высшую теплотворную способность горючей массы:

Дальнейшие расчеты выполнены для часовой производительности ОНТ, если режим работы производства 360 дней в году, в три смены, 8640 часов. Часовая производительность:

Фазовый состав «влажных» ОНТ часовой производительности:

Стадии технологического процесса

Первая стадия термической обработки ТБО - сушка.

В результате сушки и отдачи 3235 кг воды фазовый состав «сухих» ОНТ:

Сушка осуществляется во вращающемся сушильном барабане 3 путем нагрева продуктами сгорания неконденсирующегося газа (см. ниже).

Вторая стадия термической обработки ТБО - пиролиз.

В результате пиролиза горючая масса распадается на два продукта: пиролизный газ (47,8%); твердый угольный остаток (52,2%).

Фазовый состав продуктов распада «сухих» ОНТ (11465 кг):

Химический состав пиролизного газа:

Химический состав твердого угольного остатка:

Теплотворная способность пиролизного газа по формуле Менделеева:

Теплотворная способность твердого угольного остатка по формуле Менделеева:

Пиролиз ОНТ осуществляется во вращающейся пиролизной барабанной реторте 4 путем нагрева безкислородным теплоносителем - генераторным газом, который получают в выносном генераторе, где рабочим телом является часть твердого угольного остатка.

Расход твердого угольного остатка на получение теплоносителя (генераторного газа) принимается из расчета теплового баланса пиролизной реторты. Потребность в энергии активации пиролиза складывается: из энергии нагрева ОНТ до температур (550…600°С), уноса тепла с пиролизным газом и твердым угольным остатком, потерь тепла в окружающую среду.

Приходными статьями теплового баланса являются: тепло экзотермических реакций распада органики и тепло «сухого» ОНТ с температурой, примерно, 100°С.

Энергия активации пиролиза «сухих» ОНТ (11465 кг/час) составляет, примерно, 600000 ккал/час.

Нагрев «сухого» ОНТ в пиролизной реторте осуществляется воздушным генераторным газом с температурой около 1000°С, полученным из твердого угольного остатка в выносном газогенераторе.

На фигуре 2 показана схема материального баланса получения теплоносителя (генгаза) для пиролизной реторты.

Теплоноситель (генераторный газ), осуществляя пиролиз ОНТ, смешивается с пиролизным газом с получением газовой смеси (5480+1430=6910 кг). Из пиролизной барабанной реторты 4 уходит смесь следующего химического состава:

Теплотворная способность газовой смеси определяется по формуле Менделеева:

Теплосодержание газовой смеси при температуре 500°С-iгс=1036500 ккал.

Пропускание газовой смеси через теплообменник-холодильник 6 с понижением температуры до 30°С приводит к конденсации смолистых веществ (560 кг) и воды (400 кг).

На фигуре 3 представлена схема материального и теплового балансов узла охлаждения газовой смеси и конденсации смол, воды.

Теплотворная способность неконденсирующегося газа, определенная по формуле Менделеева, равна:

Смолистое вещество 560 кг используется в качестве связующего для твердого угольного остатка при экструзии топливных гранул (вместо расплава термопластов в прототипе).

Количество твердого угольного остатка за минусом 200 кг/час, израсходованного на приготовление теплоносителя - генераторного газа, составляет 5785 кг/час.

Подшихтовка к твердому угольному остатку 560 кг/час смолистого вещества дает 6345 кг/час формовочной массы, которая в экструдере 9 формируется в виде топливных брикетов, характеризующихся следующими свойствами:

На фигуре 4 представлена общая технологическая схема производства топливных брикетов из ТБО по настоящему изобретению.

Основное технологическое оборудование

- Гидравлический сепаратор для отделения неорганических компонентов ТБО от органических с получением обогащенного нетрадиционного топлива (ОНТ).

- Сушильный барабан для обезвоживания ОНТ.

- Пиролизная, барабанная реторта для разделения «сухого» ОНТ на газообразную субстанцию (пиролизный газ) и твердый угольный остаток.

- Выносной газогенератор для приготовления теплоносителя для пиролиза ОНТ.

- Теплообменник-конденсатор для разделения газовой субстанции, отходящей от пиролизной реторты на смоляное вещество, водяной конденсат и неконденсирующийся газ.

- Смеситель-гомогенизатор для приготовления пресс-массы из твердого угольного остатка и смоляного конденсата.

- Экструдер для формования топливных брикетов.

Таким образом, на примере использования технического решения «Способ производства топливных брикетов из ТБО и прочих органических отходов показано, что при полной утилизации ТБО в городе с населением 600 тысяч человек 210 тыс. т ТБО в год будут перерабатываться в следующую продукцию:

Похожие патенты RU2567861C1

название год авторы номер документа
Способ переработки твердых бытовых отходов во вторичное сырье 2022
  • Фомин Александр Юрьевич
  • Фомина Виктория Игоревна
  • Минаев Павел Андреевич
  • Апатенко Алексей Сергеевич
  • Севрюгина Надежда Савельевна
  • Лосев Александр Александрович
  • Куликов Олег Сергеевич
  • Юматов Максим Сергеевич
  • Клюшин Андрей Александрович
  • Косенко Иван Николаевич
RU2783180C1
СПОСОБ ПЕРЕРАБОТКИ ТВЕРДЫХ ОТХОДОВ В ТОПЛИВНЫЕ БРИКЕТЫ 2023
  • Алифиренко Дмитрий Геннадиевич
  • Ищенко Антон Анатольевич
RU2822059C1
СПОСОБ ПОЛНОЙ БЕЗОТХОДНОЙ УТИЛИЗАЦИИ ТВЁРДЫХ КОММУНАЛЬНЫХ ОТХОДОВ В НАПРАВЛЕНИИ ПОЛУЧЕНИЯ ТОПЛИВА И ТЕХНОГЕННОГО ГРУНТА 2023
  • Калинин Александр Валерьевич
RU2819577C1
Устройство для получения древесного угля 2016
  • Пекарец Александр Андреевич
RU2628602C1
Способ безостаточной утилизации углеродосодержащих отходов и устройство для его осуществления 2020
  • Быков Игорь Юрьевич
  • Автамонов Станислав Геннадьевич
  • Борейко Дмитрий Андреевич
  • Денисов Матвей Александрович
  • Шаяхметов Арслан Зуфарович
RU2738841C1
СПОСОБ ПОЛУЧЕНИЯ МИНЕРАЛЬНОЙ ВАТЫ 2019
  • Иванов Раджив Анатольевич
  • Шабалин Сергей Иванович
RU2730462C1
СПОСОБ ПОЛУЧЕНИЯ ТОПЛИВНОГО БРИКЕТА 2019
  • Иванов Раджив Анатольевич
  • Шабалин Сергей Иванович
RU2733947C1
ТОПЛИВНЫЙ БРИКЕТ 2019
  • Иванов Раджив Анатольевич
  • Шабалин Сергей Иванович
RU2733946C1
Способ и устройство переработки углеродсодержащих отходов 2017
  • Дорощук Николай Анатольевич
  • Дорощук Антон Николаевич
  • Захаров Александр Александрович
  • Ганзя Максим Викторович
RU2649446C1
Способ пиролиза твердого топлива 1972
  • Чуханов Зиновий Зиновьевич
  • Чуханов Зиновий Федорович
  • Зыбалова Галина Павловна
  • Федоров Николай Ананьевич
  • Николаев Анатолий Михайлович
  • Карасев Вадим Алексеевич
  • Шапатина Елизавета Андреевна
  • Цупров Сергей Андреевич
SU767172A1

Иллюстрации к изобретению RU 2 567 861 C1

Реферат патента 2015 года СПОСОБ ИЗГОТОВЛЕНИЯ ТОПЛИВНЫХ БРИКЕТОВ ИЗ ТВЕРДЫХ БЫТОВЫХ ОТХОДОВ (ТБО)

Изобретение описывает способ изготовления топливных брикетов из твердых бытовых отходов (ТБО) и других органических отходов, включающий сортировку ТБО с выделением горючей массы, измельчение выделенной из ТБО горючей массы, сушку, подогрев измельченного материала, формирование из измельченного материала гранул, при этом сортировка исходных ТБО с выделением горючей массы осуществляется гидромеханическим способом, измельчению подвергается масса с влажностью 40…55%, подогрев массы осуществляется в интервале температур 550…1000°С, энергообеспечение производства топливных брикетов производится полностью за счет скрытой внутренней энергии горючей массы ТБО, в качестве связующего при формировании брикетов используется смолистый конденсат, выделенный из газообразных продуктов термического распада горючей массы, нагретой до температуры 550…1000°C. Технический результат заключается в получении топливных гранул, которые являются высококалорийным, бездымным, экологически чистым топливом и которые могут использоваться в любых топках и промышленных предприятиях без предъявления к топочным устройствам каких-либо специальных требований. 4 ил., 1 табл., 1 пр.

Формула изобретения RU 2 567 861 C1

Способ изготовления топливных брикетов из твердых бытовых отходов (ТБО) и других органических отходов, включающий сортировку ТБО с выделением горючей массы, измельчение выделенной из ТБО горючей массы, сушку измельченного материала, подогрев измельченного материала, формирование из измельченного материала гранул, отличающийся тем, что сортировка исходных ТБО с выделением горючей массы осуществляется гидромеханическим способом, измельчению подвергается масса с влажностью 40…55%, подогрев массы осуществляется в интервале температур 550…1000°С, энергообеспечение производства топливных брикетов производится полностью за счет скрытой внутренней энергии горючей массы ТБО, в качестве связующего при формировании брикетов используется смолистый конденсат, выделенный из газообразных продуктов термического распада горючей массы, нагретой до температуры 550…1000°С.

Документы, цитированные в отчете о поиске Патент 2015 года RU2567861C1

СПОСОБ ПЕРЕРАБОТКИ ТВЕРДЫХ БЫТОВЫХ ОТХОДОВ В ТОПЛИВО ДЛЯ ПЕЧЕЙ ВЫСОКОТЕМПЕРАТУРНОГО СИНТЕЗА ЦЕМЕНТНОГО КЛИНКЕРА 2012
  • Конев Виктор Александрович
  • Бондаренко Антонина Викторовна
  • Конев Михаил Викторович
  • Коршиков Владимир Дмитриевич
  • Чмырев Игорь Николаевич
  • Антипов Владимир Николаевич
  • Кривцов Алексей Юрьевич
  • Дегтярев Владимир Николаевич
RU2479622C1

RU 2 567 861 C1

Авторы

Богачев Александр Петрович

Калинин Александр Валерьевич

Даты

2015-11-10Публикация

2014-04-18Подача