ПРЕЦИЗИОННЫЙ ОПЕРАЦИОННЫЙ УСИЛИТЕЛЬ НА ОСНОВЕ РАДИАЦИОННО СТОЙКОГО БИПОЛЯРНО-ПОЛЕВОГО ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА Российский патент 2015 года по МПК H03F3/45 G05D1/00 

Описание патента на изобретение RU2568384C1

Изобретение относится к области радиотехники и может быть использовано в качестве прецизионного устройства усиления сигналов различных сенсоров.

В современной радиоэлектронной аппаратуре находят применение операционные усилители (ОУ) на полевых и биполярных транзисторах, выполненные на основе архитектуры «перегнутого каскода» [1-14]. Их основные достоинства - расширенный частотный диапазон, а также эффективное использование напряжения питания.

Для работы в условиях космического пространства, в экспериментальной физике необходимы радиационно стойкие ОУ с малым напряжением смещения нуля (Uсм) и повышенным коэффициентом усиления по напряжению (100-120 дБ). Мировой опыт проектирования устройств данного класса показывает, что решение этих задач возможно с использованием биполярно-полевого технологического процесса [15], обеспечивающего формирование p-канальных полевых и высококачественных n-p-n биполярных транзисторов с радиационной стойкостью до 1 Мрад и потоком нейтронов до 1013 н/см2. Однако для таких ОУ необходима специальная схемотехника, учитывающая ограничения биполярно-полевой технологии [15].

Ближайшим прототипом (фиг. 1) заявляемого устройства является операционный усилитель по патенту US 5.422.600 fig. 1. Он содержит (фиг. 1) входной дифференциальный каскад 1, общая эмиттерная цепь которого согласована с первой 2 шиной источника питания, первый 3 токовый выход входного дифференциального каскада 1, соединенный с эмиттером первого 4 выходного транзистора и через первый 5 вспомогательный резистор связанный со второй 6 шиной источника питания, второй 7 токовый выход входного дифференциального каскада 1, соединенный с эмиттером второго 8 выходного транзистора и через второй 9 вспомогательный резистор связанный со второй 6 шиной источника питания, первый 10 токостабилизирующий двухполюсник, включенный между коллектором первого 4 выходного транзистора и первой 2 шиной источника питания, второй 11 токостабилизирующий двухполюсник, включенный между коллектором второго 8 выходного транзистора и первой 2 шиной источника питания, выходной буферный усилитель 12, причем базы первого 4 и второго 8 выходных транзисторов связаны друг с другом.

Существенный недостаток известного ОУ состоит в том, что в диапазоне рабочих, прежде всего низких температур, а также при воздействии потока нейтронов он имеет повышенные значения напряжения смещения нуля (Uсм) (единицы-десятки милливольт). В конечном итоге это снижает прецизионность известного ОУ. Кроме этого его коэффициент усиления по напряжению (Kу) получается небольшим.

Основная задача предлагаемого изобретения состоит в уменьшении напряжения смещения нуля.

Первая дополнительная задача - повышение коэффициента усиления дифференциального сигнала ОУ в разомкнутом состоянии до уровня 130-140 дБ.

Вторая дополнительная задача - повышение коэффициента ослабления входных синфазных сигналов ОУ.

Поставленные задачи достигаются тем, что в операционном усилителе фиг. 1, содержащем входной дифференциальный каскад 1, общая эмиттерная цепь которого согласована с первой 2 шиной источника питания, первый 3 токовый выход входного дифференциального каскада 1, соединенный с эмиттером первого 4 выходного транзистора и через первый 5 вспомогательный резистор связанный со второй 6 шиной источника питания, второй 7 токовый выход входного дифференциального каскада 1, соединенный с эмиттером второго 8 выходного транзистора и через второй 9 вспомогательный резистор связанный со второй 6 шиной источника питания, первый 10 токостабилизирующий двухполюсник, включенный между коллектором первого 4 выходного транзистора и первой 2 шиной источника питания, второй 11 токостабилизирующий двухполюсник, включенный между коллектором второго 8 выходного транзистора и первой 2 шиной источника питания, выходной буферный усилитель 12, причем базы первого 4 и второго 8 выходных транзисторов связаны друг с другом, предусмотрены новые элементы и связи - в схему введены первый 13 и второй 14 дополнительные полевые транзисторы с управляющим p-n переходом, объединенные истоки которых связаны с базами первого 4 и второго 8 выходных транзисторов и подключены к первой 2 шине источника питания через дополнительный токостабилизирующий двухполюсник 15, сток первого 13 дополнительного полевого транзистора соединен со входом дополнительного токового зеркала 16, согласованного со второй 6 шиной источника питания, а сток второго 14 дополнительного полевого транзистора соединен с выходом дополнительного токового зеркала 16 и входом выходного буферного усилителя 12.

На фиг. 1 показана схема ОУ-прототипа, а на фиг. 2 - схема заявляемого устройства в соответствии с формулой изобретения.

На фиг. 3 показана схема фиг. 2 с конкретным выполнением выходного буферного усилителя 12.

На фиг. 4 приведена схема ОУ фиг. 2 в среде компьютерного моделирования PSpice на моделях интегральных транзисторов АБМК_1_3 НПО «Интеграл» (г. Минск).

На фиг. 5 представлена амплитудно-частотная характеристика ОУ фиг. 4 при 100% отрицательной обратной связи.

На фиг. 6 показана амплитудно-частотная характеристика разомкнутого ОУ фиг. 4, из которой следует, что предлагаемая схема фиг.4 имеет повышенный коэффициент усиления по напряжению, близкий к 140 дБ (Kу=100.000.000).

На фиг. 7 приведена зависимость напряжения смещения нуля (Uсм) схемы ОУ фиг. 4 от потока нейтронов.

На фиг. 8 показана зависимость напряжения смещения нуля схемы ОУ фиг. 4 в диапазоне температур от -60÷+80°C.

Прецизионный операционный усилитель на основе радиационно стойкого биполярно-полевого технологического процесса фиг. 2 содержит входной дифференциальный каскад 1, общая эмиттерная цепь которого согласована с первой 2 шиной источника питания, первый 3 токовый выход входного дифференциального каскада 1, соединенный с эмиттером первого 4 выходного транзистора и через первый 5 вспомогательный резистор связанный со второй 6 шиной источника питания, второй 7 токовый выход входного дифференциального каскада 1, соединенный с эмиттером второго 8 выходного транзистора и через второй 9 вспомогательный резистор связанный со второй 6 шиной источника питания, первый 10 токостабилизирующий двухполюсник, включенный между коллектором первого 4 выходного транзистора и первой 2 шиной источника питания, второй 11 токостабилизирующий двухполюсник, включенный между коллектором второго 8 выходного транзистора и первой 2 шиной источника питания, выходной буферный усилитель 12, причем базы первого 4 и второго 8 выходных транзисторов связаны друг с другом. В схему введены первый 13 и второй 14 дополнительные полевые транзисторы с управляющим p-n переходом, объединенные истоки которых связаны с базами первого 4 и второго 8 выходных транзисторов и подключены к первой 2 шине источника питания через дополнительный токостабилизирующий двухполюсник 15, сток первого 13 дополнительного полевого транзистора соединен со входом дополнительного токового зеркала 16, согласованного со второй 6 шиной источника питания, а сток второго 14 дополнительного полевого транзистора соединен с выходом дополнительного токового зеркала 16 и входом выходного буферного усилителя 12.

Кроме этого на фиг. 2 входной дифференциальный каскад 1 реализован на входных полевых транзисторах 17 и 18, источнике опорного тока 19 и резисторе 20, который моделирует работу входного дифференциального каскада 1 при работе с входными синфазными сигналами. Выходом устройства 21 является выход буферного усилителя 12.

На фиг. 3 приведена схема, соответствующая фиг. 2, в которой инвертирующий выходной буферный усилитель 12 реализован в виде выходного транзистора 22 по схеме с общим эмиттером, источника тока 23 и неинвертируюшего каскада 24.

Рассмотрим работу ОУ фиг. 2.

Статический режим транзисторов схемы фиг. 2 устанавливается источниками опорного тока, выполненными в виде токостабилизирующих двухполюсников 10, 11 и 19. При этом токи стока и токи коллекторов транзисторов схемы определяются уравнениями

где I10, I11, I19 - токи двухполюсников 10, 11, 19.

Коэффициент усиления по напряжению схемы ОУ фиг. 2 определяется произведением

где uвых. - приращение выходного напряжения ОУ, вызванное изменением входного напряжения (uвх.);

- коэффициент преобразования входного напряжения ОУ (uвх) в напряжение между узлами Σ1, Σ2 (uΣ1-Σ2);

- коэффициент передачи дифференциального напряжения между узлами Σ1, Σ2 на вход буферного усилителя 12 (Σ3);

uΣ1-Σ2 - приращение напряжения между высокоимпедансными узлами Σ1 и Σ2;

- коэффициент передачи по напряжению буферного усилителя 12;

uΣ3 - приращение напряжения в высокоимпедансном узле Σ3.

Причем

где Rэкв.Σ1-Σ2 - эквивалентное дифференциальное сопротивление между высокоимпедансными узлами Σ1 и Σ2;

Rэкв.Σ3 - эквивалентное сопротивление в высокоимпедансном узле Σ3;

S13, S14, S17, S18 - крутизны стоко-затворной характеристики соответствующих полевых транзисторов (13, 14, 17, 18).

Численное значение эквивалентного сопротивления Rэкв.Σ1-Σ2 близко к сопротивлениям закрытых коллекторов переходов выходных транзисторов 4 и 8, а сопротивление Rэкв.Σ3 определяется, в основном, входным сопротивлением буферного усилителя 12. Как следствие, за счет создания в схеме фиг. 2 трех высокоимпедансных узлов (Σ1, Σ2, Σ3) коэффициент усиления по напряжению разомкнутого ОУ фиг. 2 получается достаточно большим (130-140 дБ) и на несколько порядков превышает Kу схемы прототипа (фиг. 1).

В заявляемой схеме ОУ (в сравнении с прототипом) повышается также коэффициент ослабления входных синфазных сигналов. Данный эффект объясняется повышенной симметрией схемы ОУ фиг. 2 и введением отрицательной обратной связи по синфазному сигналу (транзисторы 13 и 14). За счет высокой симметрии схемы ОУ и применения полевых транзисторов 13, 14 напряжение смещения нуля заявляемого ОУ измеряется микровольтами (фиг. 7, фиг. 8).

Таким образом, заявляемое устройство имеет существенные преимущества в сравнении с ОУ-прототипом.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Патент США №5.422.600, фиг. 2.

2. Патент США №4.406.990, фиг. 4.

3. Патент США №5.952.882.

4. Патент США №4.723.111.

5. Патент США №4.293.824.

6. Патент США №5.323.121.

7. Патент США №5.420.540 fig. 1.

8. Патент RU №2.354.041 С1.

9. Патентная заявка США №2003/0201828 fig 1, fig 2.

10. Патент США №6.825.721 fig 1, fig 2.

11. Патент США №6.542.030 fig. 1.

12. Патент US 6.456.162, fig. 2.

13. Патент US 6.501.333.

14. Патент US 6.717.466.

15. Элементная база радиационно стойких информационно-измерительных систем: монография. / Н.Н. Прокопенко, О.В. Дворников, С.Г. Крутчинский; под общ. ред. д.т.н. проф. Н.Н. Прокопенко; ФГБОУ ВПО «Южно-Рос. гос. ун-т. экономики и сервиса». - Шахты: ФГБОУ ВПО «ЮРГУЭС», 2011. - 208 с.

Похожие патенты RU2568384C1

название год авторы номер документа
ПРЕЦИЗИОННЫЙ ДВУХКАСКАДНЫЙ ДИФФЕРЕНЦИАЛЬНЫЙ ОПЕРАЦИОННЫЙ УСИЛИТЕЛЬ 2015
  • Прокопенко Николай Николаевич
  • Дворников Олег Владимирович
  • Бутырлагин Николай Владимирович
  • Бугакова Анна Витальевна
  • Серебряков Александр Игоревич
RU2615070C1
БИПОЛЯРНО-ПОЛЕВОЙ ОПЕРАЦИОННЫЙ УСИЛИТЕЛЬ 2015
  • Прокопенко Николай Николаевич
  • Дворников Олег Владимирович
  • Пахомов Илья Викторович
  • Бугакова Анна Витальевна
RU2589323C1
ДИФФЕРЕНЦИАЛЬНЫЙ ОПЕРАЦИОННЫЙ УСИЛИТЕЛЬ С МАЛЫМ НАПРЯЖЕНИЕМ ПИТАНИЯ 2015
  • Прокопенко Николай Николаевич
  • Дворников Олег Владимирович
  • Пахомов Илья Викторович
  • Бугакова Анна Витальевна
RU2613842C1
СИММЕТРИЧНАЯ АКТИВНАЯ НАГРУЗКА ДИФФЕРЕНЦИАЛЬНЫХ УСИЛИТЕЛЕЙ ДЛЯ БИПОЛЯРНО-ПОЛЕВЫХ РАДИАЦИОННО-СТОЙКИХ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ 2014
  • Прокопенко Николай Николаевич
  • Дворников Олег Владимирович
  • Бутырлагин Николай Владимирович
  • Бугакова Анна Витальевна
RU2572380C1
Арсенид-галлиевый операционный усилитель на основе "перегнутого" каскода 2023
  • Сергеенко Марсель Алексеевич
  • Чумаков Владислав Евгеньевич
  • Прокопенко Николай Николаевич
  • Бугакова Анна Витальевна
RU2820341C1
ПРЕЦИЗИОННЫЙ ОПЕРАЦИОННЫЙ УСИЛИТЕЛЬ ДЛЯ РАДИАЦИОННО-СТОЙКОГО БИПОЛЯРНО-ПОЛЕВОГО ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА 2014
  • Прокопенко Николай Николаевич
  • Дворников Олег Владимирович
  • Бутырлагин Николай Владимирович
  • Бугакова Анна Витальевна
RU2571569C1
БИПОЛЯРНО-ПОЛЕВОЙ ДИФФЕРЕНЦИАЛЬНЫЙ ОПЕРАЦИОННЫЙ УСИЛИТЕЛЬ 2015
  • Прокопенко Николай Николаевич
  • Дворников Олег Владимирович
  • Бутырлагин Николай Владимирович
  • Бугакова Анна Витальевна
RU2615068C1
Арсенид-галлиевый операционный усилитель на p-n-p биполярных и полевых транзисторах с управляющим p-n переходом 2023
  • Кузнецов Дмитрий Владимирович
  • Чумаков Владислав Евгеньевич
  • Прокопенко Николай Николаевич
  • Фролов Илья Владимирович
RU2813281C1
БИПОЛЯРНО-ПОЛЕВОЙ ОПЕРАЦИОННЫЙ УСИЛИТЕЛЬ НА ОСНОВЕ "ПЕРЕГНУТОГО" КАСКОДА 2015
  • Прокопенко Николай Николаевич
  • Дворников Олег Владимирович
  • Бутырлагин Николай Владимирович
RU2604684C1
Многоканальный дифференциальный усилитель на арсенид-галлиевых полевых и биполярных транзисторах 2022
  • Савченко Евгений Матвеевич
  • Прокопенко Николай Николаевич
  • Чумаков Владислав Евгеньевич
  • Пронин Андрей Анатольевич
  • Дроздов Дмитрий Геннадьевич
  • Першин Александр Дмитриевич
  • Мартынов Алексей Александрович
RU2792710C1

Иллюстрации к изобретению RU 2 568 384 C1

Реферат патента 2015 года ПРЕЦИЗИОННЫЙ ОПЕРАЦИОННЫЙ УСИЛИТЕЛЬ НА ОСНОВЕ РАДИАЦИОННО СТОЙКОГО БИПОЛЯРНО-ПОЛЕВОГО ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА

Изобретение относится к области радиотехники и может быть использовано в качестве прецизионного устройства усиления сигналов различных сенсоров. Технический результат заключается в уменьшении напряжения смещения нуля для повышения прецизионности операционного усилителя. Технический результат достигается за счет прецизионного операционного усилителя на основе радиационно стойкого биполярно-полевого технологического процесса, который содержит входной дифференциальный каскад (1), общая эмиттерная цепь которого согласована с первой (2) шиной источника питания, первый (3) токовый выход входного дифференциального каскада (1), эмиттер первого (4) выходного транзистора, первый (5) вспомогательный резистор, вторую (6) шину источника питания, второй (7) токовый выход входного дифференциального каскада (1), эмиттер второго (8) выходного транзистора, второй (9) вспомогательный резистор, первый (10) токостабилизирующий двухполюсник, второй (11) токостабилизирующий двухполюсник, выходной буферный усилитель (12). В схему введены первый (13) и второй (14) дополнительные полевые транзисторы с управляющим p-n переходом и дополнительное токовое зеркало (16). 8 ил.

Формула изобретения RU 2 568 384 C1

Прецизионный операционный усилитель на основе радиационно стойкого биполярно-полевого технологического процесса, содержащий входной дифференциальный каскад (1), общая эмиттерная цепь которого согласована с первой (2) шиной источника питания, первый (3) токовый выход входного дифференциального каскада (1), соединенный с эмиттером первого (4) выходного транзистора и через первый (5) вспомогательный резистор связанный со второй (6) шиной источника питания, второй (7) токовый выход входного дифференциального каскада (1), соединенный с эмиттером второго (8) выходного транзистора и через второй (9) вспомогательный резистор связанный со второй (6) шиной источника питания, первый (10) токостабилизирующий двухполюсник, включенный между коллектором первого (4) выходного транзистора и первой (2) шиной источника питания, второй (11) токостабилизирующий двухполюсник, включенный между коллектором второго (8) выходного транзистора и первой (2) шиной источника питания, выходной буферный усилитель (12), причем базы первого (4) и второго (8) выходных транзисторов связаны друг с другом, отличающийся тем, что в схему введены первый (13) и второй (14) дополнительные полевые транзисторы с управляющим p-n переходом, объединенные истоки которых связаны с базами первого (4) и второго (8) выходных транзисторов и подключены к первой (2) шине источника питания через дополнительный токостабилизирующий двухполюсник (15), сток первого (13) дополнительного полевого транзистора соединен со входом дополнительного токового зеркала (16), согласованного со второй (6) шиной источника питания, а сток второго (14) дополнительного полевого транзистора соединен с выходом дополнительного токового зеркала (16) и входом выходного буферного усилителя (12).

Документы, цитированные в отчете о поиске Патент 2015 года RU2568384C1

US 5422600 A, 06.06.1995
ПРЕЦИЗИОННЫЙ ОПЕРАЦИОННЫЙ УСИЛИТЕЛЬ 2011
  • Прокопенко Николай Николаевич
  • Будяков Петр Сергеевич
  • Сильнов Андрей Александрович
RU2449465C1
ПРЕЦИЗИОННЫЙ ОПЕРАЦИОННЫЙ УСИЛИТЕЛЬ 2011
  • Прокопенко Николай Николаевич
  • Белич Сергей Сергеевич
  • Будяков Пётр Сергеевич
RU2450424C1
ПРЕЦИЗИОННЫЙ ДИФФЕРЕНЦИАЛЬНЫЙ ОПЕРАЦИОННЫЙ УСИЛИТЕЛЬ 2010
  • Прокопенко Николай Николаевич
  • Гришков Виталий Николаевич
  • Солодко Михаил Владимирович
RU2433523C1
ПРЕЦИЗИОННЫЙ ОПЕРАЦИОННЫЙ УСИЛИТЕЛЬ 2010
  • Прокопенко Николай Николаевич
  • Серебряков Александр Игоревич
  • Наумов Максим Владимирович
RU2419198C1

RU 2 568 384 C1

Авторы

Прокопенко Николай Николаевич

Дворников Олег Владимирович

Бутырлагин Николай Владимирович

Бугакова Анна Витальевна

Даты

2015-11-20Публикация

2014-11-26Подача