ПОЛИМЕРНЫЕ МЕМБРАНЫ ДЛЯ ТОПЛИВНЫХ ЭЛЕМЕНТОВ, ОСНОВАННЫЕ НА СМЕСЯХ АЗОТСОДЕРЖАЩИХ ПОЛИМЕРОВ И НАФИОНА ИЛИ ЕГО АНАЛОГОВ Российский патент 2016 года по МПК C08J5/22 C08L79/00 B01D71/58 H01M8/10 H01M2/14 

Описание патента на изобретение RU2573523C2

Область техники, к которой относится изобретение

Энергетика, химические источники тока, топливные элементы, мембраны для топливных элементов, топливные элементы

Уровень техники

В настоящее время в топливных элементах наиболее широко применяются электролитные мембраны на основе перфторсульфоновой кислоты, которые известны как Нафион (Nafion, Торговая марка DuPont). Нафион имеет боковые цепи, которые связаны с основной цепью гидрофобного политетрафторэтилена (ПТФЭ), причем боковые цепи на концах имеют сульфоновые кислотные группы. При связывании сульфоновых групп и молекул воды в водной среде образуются ионные кластеры. При набухании мембраны такие кластеры соединяются узкими каналами, состоящими из областей, состоящих из сильно гидратированных сульфоновых групп, что приводит к увеличению протонной проводимости мембран Нафион на 3-5 порядков (Chemical Reviews, 2004, Vol. 104, No. 10).

В качестве других электролитных мембран, иных, чем Нафион, существуют углеводородные электролитные мембраны, электролитные мембраны на основе ароматических углеводородов и т.д. Все указанные мембраны содержат доноров протонов, например, сульфоновые группы, фосфатные группы, карбоксильные группы и т.д. Как и Нафион, указанные электролитные мембраны высвобождают протоны, проявляя, таким образом, протонную проводимость, когда они находятся в гидратированном состоянии. Если содержание доноров протонов, таких как сульфоновые группы, повышается, протонная проводимость возрастает из-за повышения поглощения воды при гидратации сульфоновых групп и создания непрерывной сети водородных связей в каналах мембран и кластерных систем (в случае Нафиона) (G.G. Scherer (Ed.), Fuel Cells I, Springer Berlin Heidelberg, Berlin, Heidelberg, 2008: pp. 55-126.)

Существенным фактором, ограничивающим применение мембран на основе Нафиона, является его механическая нестабильность, выражающаяся в значительном коэффициенте набухания мембран. Причиной высокого коэффициента набухания является гидратация функциональных полярных групп мембран, которая обеспечивает протонную проводимость мембран и неизбежна в водородно-воздушных топливных элементах.

Суспензионные смеси комплекса, описанного ниже, включающие азотсодержащий полимер и Нафион или его аналог (US 05916505, US 2007/0082246 A1, US 2003/0104258 А1) могут формировать пленки с хорошими механическими свойствами. Указанные пленки обладают протонной проводимостью, которая составляет 10-4-10-2 См/см при комнатной температуре. Падение протонной проводимости при 90°C не наблюдается. Кроме того, указанные пленки в меньшей степени набухают в воде и могут применяться в качестве протонопроводящих мембран для низко- и среднетемпературных топливных элементов (PMFC).

Раскрытие изобретения

Задача, на решение которой направлено изобретение

Уменьшение коэффициента набухания протонпроводящих полимерных мембран при сохранении протонпроводящих свойств таких мембран за счет комплексообразования нафионоподобного полимера, являющегося основным компонентом мембраны, с азотсодержащими полимерами.

Жидкие композиции сформированы из смесей, включающих:

(а) азотсодержащий полимер, такой как поли-(4-винилпиридин) и его производные, полученные посредством алкилирования, поли-(2-винилпиридин) и его производные, полученные посредством алкилирования, полиэтиленимин, поли-(2-диметиламино)этилметакрилат)метил хлорид, поли-(2-диметиламино)этилметакрилат)метил бромид, поли-(диаллилдиметиламмоний) хлорид, поли-(диаллилдиметиламмоний) бромид,

(б) Нафион или другой нафионподобный полимер, выбранный из группы, включающей Flemion, Aciplex, Dowmembrane, Neosepta, и ионообменные смолы, содержащие карбоксильные и сульфоновые группы, в протонированной форме, имеющий сульфоновые функциональные группы и обменную емкость менее чем, по меньшей мере, 1,5, причем соотношение [азотсодержащий полимер] / [Нафион или нафионподобный полимер] составляет от 10 до 0,001,

(в) растворитель, выбранный из группы, включающей метанол, этиловый спирт, н-пропиловый спирт, изопропиловый спирт, н-бутиловый спирт, изобутиловый спирт, трет-бутиловый спирт, формамиды, ацетамиды, диметилсульфоксид, N-метилпирроллидон, а также дистиллированную воду и их смеси, с различными соотношениями [вода] / [органический растворитель] с образованием комплекса, включающего в себя электростатические взаимодействия, водородные и Ванн-дер-Ваальсовы связи.

Полимерные мембраны формируют посредством отливки смесей, указанных выше, на горизонтальной поверхности, с последующим затвердением на воздухе.

В другом варианте осуществления изобретение относится к протонопроводящим полимерным мембранам, обработка которых необходима для достижения полностью гидратированного состояния и может быть выполнена, например, следующим образом:

a) мембраны выдерживают в 1 М кислоте, например, помимо прочих, в азотной кислоте, серной кислоте, хлороводородной кислоте, фосфорной кислоте, муравьиной кислоте, уксусной кислоте или в растворе перекиси водорода в воде (предпочтительно в 0,5-50% растворе, более предпочтительно в 1-20% растворе и, наиболее предпочтительно, в 5-10% растворе). Обработку выполняют при 100°C в течение от 30 минут до 6 часов, более предпочтительно от 1 часа до 5 часов и, наиболее предпочтительно, от 2 часов до 4 часов.

b) мембраны выдерживают в деионизованной дистиллированной воде при 100°C в течение от 30 минут до 6 часов, более предпочтительно от 1 часа до 5 часов и, наиболее предпочтительно, от 2 часов до 4 часов.

Нафионоподобные полимеры, выбранные из группы Flemion, Aciplex, Neosepta и Dowmembrane, принципиально схожи по химическому строению с Нафионом, все эти вещества - сополимеры тетрафторэтилена и сульфированного или карбоксилированного перфторвинилового эфира. Различия всех этих химических веществ заключаются в эквивалентном весе, т.е. количестве ионогенных групп, приходящихся на 1000 г полимера, степени кристалличности полимера, длиной и наличием перфторметильных заместителей в боковых цепях данных полимеров, наличием и количеством простых эфирных связей в боковой цепи. Поскольку перфторсополимеры такого рода не образуют истинных растворов, их точное строение до сих пор не определено ввиду ограниченности современных методов исследования, поэтому при использовании того или иного полимера, как правило, описывают следующее: эквивалентный вес или обменную емкость полимера, тип ионогенных групп, тип обменивающегося иона (протон, ионы щелочных и щелочноземельных металлов являются наиболее распространенными, однако не единственными в данной категории свойств), длина фтороуглеродной боковой цепи (или длина боковой развязки, в данном случае ионогенная группа не учитывается), если таковая известна. В целом, приведенные полимеры - аналоги Нафиона, т.е. их строение и химические свойства практически одинаковы, однако ввиду различий в процессе их производства, которые являются коммерческой тайной, их протонная проводимость и коэффициенты набухания различаются в рамках значений, представленных в заявке.

Технический результат

Полученные таким путем мембраны показывают протонную проводимость, не меньшую чем в 10 раз по сравнению с протонной проводимостью чистого Нафиона, не проявляют какого-либо уменьшения протонной проводимости при 90°C, являются более износостойкими и предназначены для применения в низкотемпературных и среднетемпературных топливных элементах с полимерной мембраной (PMFC).

Осуществление изобретения

Пример 1. Получение интерполиэлектролитных комплексов азотсодержащий полимер - Нафион.

Для получения жидких композиций азотсодержащий полимер, выбранный из полимеров, включающих: поли-(4-винилпиридин), поли-(N-метил-4-винилпиридин), поли-(N-этил-4-винилпиридин), поли-(2-винилпиридин), поли-(N-метил-2-винилпиридин), поли-(N-этил-2-винилпиридин); полиэтиленимин, поли-(2-диметиламино)этилметакрилат)метил хлорид, поли-(2-диметиламино)этилметакрилат)метил бромид, поли-(диаллилдиметиламмоний) хлорид, поли-(диаллилдиметиламмоний) бромид, растворяли либо в одном из следующих растворителей: метанол, этиловый спирт, н-пропиловый спирт, изопропиловый спирт, н-бутиловый спирт, изобутиловый спирт, трет-бутиловый спирт, формамид, N-метилформамид, диметилформамид, диэтилформамид, N-этилформамид, ацетамид, N-метилацетамид, N-этилацетамид, диметилацетамид, диэтилацетамид, диметилсульфоксид, N-метилпирроллидон, либо в их смеси с дистиллированной водой, до получения однородного прозрачного раствора. Полученный раствор смешивали с Нафионом, суспендированным в смеси одного из перечисленных растворителей и дистиллированной воды, и перемешивали в течение 30 минут до гомогенизации ([азотсодержащий полимер]/[Нафион]=10-0,001). При любой комбинации азотсодержащих полимеров и Нафиона получали гомогенную жидкость вне зависимости от того, какой полимер и какой из вышеперечисленных растворителей были для этого использованы.

Пример 2. Получение композитной мембраны азотсодержащий полимер - Нафион.

Полученную, как указано в примере 1, гомогенную жидкость интерполиэлектролитного комплекса, состоящего из одного из азотсодержащих полимеров и Нафиона, отливали на плоскую поверхность чашки Петри или полиэтиленовую пленку, натянутую на стеклянное кольцо, и сушили на воздухе с получением протонопроводящей пленки. Затем данную пленку отделяли от поверхности и подвергали обработке в кипящей 1 М HCl в течение 3 часов, а затем в кипящей дистиллированной воде в течение 3 часов.

Пример 3. Альтернативные виды обработки композитной мембраны азотсодержащий полимер - Нафион.

Пленку, полученную и обработанную способами, указанными в примере 1 и 2 дополнительно обрабатывали в одной из выбранных кислот: азотной, серной, хлороводородной, фосфорной, муравьиной, уксусной кислоте, концентрация которой не превышала 1 М при температуре 100°C в течение 3 часов, а затем в 10% растворе перекиси водорода в воде в течение 3 часов. После обработки в 1 М растворе кислоты и перекиси водорода указанная мембрана дополнительно обработана в деионизованной дистиллированной воде при 100°C в течение периода продолжительностью от 30 минут до 6 часов, для удаления продуктов окисления и примесей, случайно внесенных в состав мембраны при ее изготовлении.

Пример 4. Измерение технических характеристик композитной мембраны азотсодержащий полимер - Нафион или нафионоподобный полимер - протонной проводимости и коэффициента набухания.

Для измерения протонной проводимости из пленок вырезали фрагменты размером 1×2 см, которые зажимали двумя плоскими платиновыми электродами. Измерения проводили с помощью импедансной спектроскопии двухзондовым методом на приборе AutoLab в интервале частот 8000 Гц - 1 МГц при температурах от 20 до 90°C с шагом 5°C. Погрешность прибора 2%. Погрешность измерения температуры - 0,5°C.

Обработку результатов измерения проводили аппроксимацией среднечастотной части годографа импеданса, определяя активное сопротивление ячейки с использованием эквивалентной электрической схемы RQ, где R - активное сопротивление, включающее сопротивление мембраны и ячейки, Q - элемент постоянного фазового сдвига, характеризующий комбинацию емкостной составляющей контакта электрод-мембрана и диффузионных процессов, происходящих при приложении электрического поля, в мембране. Аппроксимацию производили с использованием программы Nova, в результате которой определяли точку пересечения аппроксимирующей кривой с осью абсцисс годографа импеданса. Значения протонной проводимости рассчитывали по формуле:

,

где l - толщина пленки, R - активное сопротивление, S - площадь электродов и принимая во внимание, что постоянная ячейки составляет 0.3 Ом.

Для измерения толщины пленок использовали микрометр МКЦ - 25.

Для измерения коэффициента набухания мембраны сушили в вакууме при 40°C в течение суток. Затем воздушно-сухие мембраны взвешивали и помещали в емкость с дистиллированной водой. После достижения равновесного гидратированного состояния, о котором судили по неизменности массы взвешиваемого образца с течением времени, образцы взвешивали, предварительно удалив с их поверхности избыточную влагу. Измерения массы образцов проводили в пределах температур от 20 до 90°C с шагом в 5°C. Точность определения температуры контролировали с помощью термостата, независимый контроль осуществляли с использованием термометра. Погрешность измерения - 0,5°C.

Коэффициент набухания рассчитывали по формуле: w=(m_наб-m_сух)/m_сух×100%, где w - коэффициент набухания, m_наб - масса мембраны, равновесно набухшей в воде при заданной температуре, m_сух - масса воздушно сухой мембраны.

Измерения коэффициента набухания и протонной проводимости согласно описанной методике, мембран, приготовленных из Нафиона 1100 в качестве образца сравнения, показали, что протонная проводимость мембраны составляет 10-2 См/см, коэффициент набухания, измеренный при температуре 80°C - 47%. Мембрана, полученная из композиции, включающей Нафион 1100 и азотсодержащий полимер поли-(4-винилпиридин) в соотношении [азотсодержащий полимер]/[Нафион или нафионоподобный полимер]=0.1, обладает протонной проводимостью 10-2 См/см и коэффициентом набухания 29%, измеренными по описанной в примере методике. Мембраны, приготовленные из Нафиона 1000 при 80°C имеют протонную проводимость 3×10-2 См/см, коэффициент их набухания составляет 53%. Мембраны, полученные из комплексов [поли-(4-винилпиридин)]/[Нафион 1000] обладают протонной проводимостью (1-7)×10-3 См/см и коэффициентом набухания 54-66%. Протонная проводимость мембран, полученных при использовании азотсодержащего полимера полиэтиленимина, как разветвленного, так и линейного, и Нафиона или нафионоподобных полимеров всегда находится в интервале значений (1-10)×10-3 См/см, а коэффициент набухания варьируется от 46 до 78%. При этом для всех исследованных полимеров наблюдается характерная зависимость протонной проводимости и коэффициента набухания: чем больше коэффициент набухания, тем выше протонная проводимость. Использование таких растворителей как: метанол, этиловый спирт, н-пропиловый спирт, изопропиловый спирт, н-бутиловый спирт, изобутиловый спирт, трет-бутиловый спирт, формамид, N-метилформамид, диметилформамид, диэтилформамид, N-этилформамид, ацетамид, N-метилацетамид, N-этилацетамид, диметилацетамид, диэтилацетамид, диметилсульфоксид, N-метилпирроллидон, либо их смеси с дистиллированной водой для изготовления протонпроводящих мембран не влияет существенно на такие технические характеристики мембран, как их протонная проводимость и коэффициент набухания, но большей частью продиктовано удобством способа изготовления мембран, скоростью их изготовления, скоростью испарения растворителя и вязкостью гомогенного раствора комплекса [азотсодержащий полимер]/[Нафион или нафионоподобный полимер]. Использование поли-(2-винилпиридина) вместо поли-(4-винилпиридина) в качестве азотсодержащего полимера не влияет на свойства получаемых пленок комплексов. При использовании сильных полиоснований азотсодержащих полимеров, таких как поли-(N-этил-4-винилпиридин), поли-(N-метил-4-винилпиридин); поли-(N-этил-2-винилпиридин); поли-(N-метил-2-винилпиридин); поли-(2-диметиламино)этилметакрилат)метил хлорид, поли-(2-диметиламино)этилметакрилат)метил бромид, поли-(диаллилдиметиламмоний) хлорид, поли-(диаллилдиметиламмоний) бромид, Нафиона или других нафионоподобных полимеров, выбранных из Flemion, Aciplex, Dowmembrane, Neosepta, образующиеся комплексы оказываются наиболее устойчивыми, вследствие чего протонная проводимость полученных пленок наиболее низкая, 10-4 См/см, однако не ниже ожидаемых значений 10-4-10-2 См/см. Комплексы также характеризуются низкими коэффициентами набухания, 42-46%, что является приемлемым для использования мембран в качестве протонных проводников в топливных элементах. При использовании Нафиона или других нафионоподобных полимеров, перечисленных выше, но содержащих карбоксильные группы (названия полимеров такие же, желаемые функциональные группы вносятся в полимер производителем по заказу), технические характеристики получаемых комплексов с азотсодержащими полимерами оказываются не ниже ожидаемых: протонная проводимость составляет не менее 10-4 См/см, коэффициент набухания - не более 120%. При увеличении соотношения [азотсодержащий полимер]/[Нафион или нафионоподобный полимер] протонная проводимость, как правило, понижается не более чем на 2 порядка, но при любом соотношении оказывается не ниже чем 10-4 См/см при 80°C.

Похожие патенты RU2573523C2

название год авторы номер документа
ПОЛИМЕРНЫЕ МЕМБРАНЫ ДЛЯ ТОПЛИВНЫХ ЭЛЕМЕНТОВ, ОСНОВАННЫЕ НА ИНТЕРПОЛИЭЛЕКТРОЛИТНЫХ КОМПЛЕКСАХ ПОЛИАНИЛИНА И НАФИОНА ИЛИ ЕГО АНАЛОГОВ (ВАРИАНТЫ) 2010
  • Боева Жанна Александровна
  • Сергеев Владимир Глебович
  • Махаева Елена Евгеньевна
  • Хохлов Алексей Ремович
  • Шин Чонг Кью
  • Годовский Дмитрий Юльевич
  • Ли Минчжон
RU2428767C1
ВЫСОКОТЕМПЕРАТУРНАЯ ПРОТОНООБМЕННАЯ МЕМБРАНА, ИСПОЛЬЗУЮЩАЯ ПРОТОННЫЙ ПРОВОДНИК ИОНОМЕР/ТВЕРДОЕ ВЕЩЕСТВО, СПОСОБ ЕЕ ИЗГОТОВЛЕНИЯ И СОДЕРЖАЩИЙ ЕЕ ТОПЛИВНЫЙ ЭЛЕМЕНТ 2003
  • Ри Хи-Ву
  • Сонг Мин-Кью
  • Ким Янг-Таек
  • Ким Ки-Хьюн
RU2313859C2
СПОСОБ МОДИФИКАЦИИ ИОНООБМЕННЫХ МЕМБРАН И МЕМБРАНЫ, ПОЛУЧЕННЫЕ ЭТИМ СПОСОБОМ 2018
  • Гвоздик Наталия Алексеевна
  • Кит Дж. Стивенсон
  • Захарова Юлия Александровна
  • Сергеев Владимир Глебович
  • Зансохова Мария Фридриховна
  • Пышкина Ольга Александровна
  • Новоскольцева Ольга Александровна
  • Карпушкин Евгений Александрович
RU2693749C1
ПРОТОНПРОВОДЯЩИЕ КОМПОЗИЦИОННЫЕ ПОЛИМЕРНЫЕ МЕМБРАНЫ И СПОСОБ ИХ ПОЛУЧЕНИЯ 2005
  • Трофимов Борис Александрович
  • Могнонов Дмитрий Маркович
  • Ермакова Тамара Георгиевна
  • Кузнецова Надежда Петровна
  • Мячина Галина Фирсовна
  • Волкова Людмила Ивановна
  • Мазуревская Жанна Павловна
  • Бальжинов Сергей Александрович
  • Ленская Елена Валерьевна
  • Калинина Федосья Эрдэмовна
  • Ильина Ольга Васильевна
  • Фарион Иван Александрович
  • Санжиева Евгения Владимировна
RU2284214C1
ЧИСТЯЩИЕ КОМПОЗИЦИИ И АГЕНТ, СВЯЗЫВАЮЩИЙ ЗАГРЯЗНИТЕЛЬ, ДЛЯ ОЧИСТКИ ОБЪЕКТОВ 2012
  • Маккирнан Робин Линн
  • Макчаин Роберт Джозеф
  • Нил Чарльз Уильям
  • Смит Стивен Дэрил
RU2578597C2
СПОСОБ СНИЖЕНИЯ ПРОНИЦАЕМОСТИ МЕМБРАНЫ ПО ОТНОШЕНИЮ К ИОНАМ ВАНАДИЯ И МЕМБРАНА, ПОЛУЧЕННАЯ ДАННЫМ СПОСОБОМ 2014
  • Мун Сиквон
  • Но Тхэ Гын
  • Хан Чжун Чжин
  • Цой Хенсам
  • Ким Енчжа
  • Пышкина Ольга Александровна
  • Годовский Дмитрий Юльевич
  • Сергеев Владимир Глебович
  • Махаева Елена Евгеньевна
  • Хохлов Алексей Ремович
  • Захарова Юлия Александровна
  • Новоскольцева Ольга Александровна
  • Кубарьков Алексей Владимирович
  • Милакин Константин Андреевич
RU2573836C1
ПОЛИМЕРЫ, АДСОРБИРУЮЩИЕ ЗАГРЯЗНИТЕЛЬ 2012
  • Смит Стивен Дэрил
  • Макчаин Роберт Джозеф
  • Маккирнан Робин Линн
  • Нил Чарльз Уильям
RU2573841C2
НЕФТЯНЫЕ ДИСТИЛЛЯТЫ С УЛУЧШЕННОЙ ЭЛЕКТРОПРОВОДНОСТЬЮ И НИЗКОТЕМПЕРАТУРНОЙ ТЕКУЧЕСТЬЮ 2006
  • Крулль Маттиас
  • Райманн Вернер
RU2419652C2
ПОЛИМЕРНАЯ КОМПОЗИЦИЯ ДЛЯ ПРОТОНОПРОВОДЯЩИХ МЕМБРАН И СПОСОБ ЕЕ ПОЛУЧЕНИЯ 2007
  • Иванчев Сергей Степанович
  • Павлюченко Валерий Николаевич
  • Примаченко Олег Николаевич
  • Хайкин Саул Янкелевич
RU2325733C1
СПОСОБ ПОЛУЧЕНИЯ ИЗООЛЕФИНОВЫХ ПОЛИМЕРОВ С ИСПОЛЬЗОВАНИЕМ ТРЕТИЧНОГО ПРОСТОГО ЭФИРА 2019
  • Томпсон, Дэвид
RU2808455C2

Реферат патента 2016 года ПОЛИМЕРНЫЕ МЕМБРАНЫ ДЛЯ ТОПЛИВНЫХ ЭЛЕМЕНТОВ, ОСНОВАННЫЕ НА СМЕСЯХ АЗОТСОДЕРЖАЩИХ ПОЛИМЕРОВ И НАФИОНА ИЛИ ЕГО АНАЛОГОВ

Изобретение относится к полимерным мембранам для низко- или высокотемпературных полимерных топливных элементов. Протонопроводящая полимерная мембрана на основе полиэлектролитного комплекса, состоящего из: а) азотсодержащего полимера, такого как поли-(4-винилпиридин) и его производные, полученные посредством алкилирования, поли-(2-винилпиридин) и его производные, полученные посредством алкилирования, полиэтиленимин, поли-(2-диметиламино)этилметакрилат)метил хлорид, поли-(2-диметиламино)этилметакрилат)метил бромид, поли-(диаллилдиметиламмоний) хлорид, поли-(диаллилдиметиламмоний) бромид, б) Нафиона или другого нафионподобного полимера, выбранного из группы, включающей Flemion, Aciplex, Dowmembrane, Neosepta и ионообменные смолы, содержащие карбоксильные и сульфоновые группы; в) жидкой смеси, включающей растворитель, выбранный из группы, включающей метанол, этиловый спирт, н-пропиловый спирт, изопропиловый спирт, н-бутиловый спирт, изобутиловый спирт, трет-бутиловый спирт, формамиды, ацетамиды, диметилсульфоксид, N-метилпирроллидон, а также дистиллированную воду и их смеси; в которой молярное отношение азотсодержащего полимера к Нафиону или нафионподобному полимеру находится в пределах 10-0,001. Мембранные материалы на основе таких смесей могут быть получены путем отливки указанных смесей на плоскую поверхность при температуре и давлении, достаточных для испарения соответствующего растворителя. Протонная проводимость изготовленных мембран на основе указанных смесей превышает протонную проводимость Нафиона и его аналогов, мембраны также обладают лучшей износостойкостью, не имеют какого-либо падения проводимости при 90°C, что обеспечивает более высокие рабочие температуры и лучшую стабильность по сравнению с Нафионом или его аналогами. 2 н. и 4 з.п. ф-лы.

Формула изобретения RU 2 573 523 C2

1. Протонопроводящая полимерная мембрана на основе полиэлектролитного комплекса, состоящего из:
а) азотсодержащего полимера, такого как поли-(4-винилпиридин) и его производные, полученные посредством алкилирования, поли-(2-винилпиридин) и его производные, полученные посредством алкилирования, полиэтиленимин, поли-(2-диметиламино)этилметакрилат)метил хлорид, поли-(2-диметиламино)этилметакрилат)метил бромид, поли-(диаллилдиметиламмоний) хлорид, поли-(диаллилдиметиламмоний) бромид,
б) Нафиона или другого нафионподобного полимера, выбранного из группы, включающей Flemion, Aciplex, Dowmembrane, Neosepta и ионообменные смолы, содержащие карбоксильные и сульфоновые группы;
в) жидкой смеси, включающей растворитель, выбранный из группы, включающей метанол, этиловый спирт, н-пропиловый спирт, изопропиловый спирт, н-бутиловый спирт, изобутиловый спирт, трет-бутиловый спирт, формамиды, ацетамиды, диметилсульфоксид, N-метилпирроллидон, а также дистиллированную воду и их смеси;
в которой молярное отношение азотсодержащего полимера к Нафиону или нафионподобному полимеру находится в пределах 10-0,001.

2. Протонопроводящая полимерная мембрана по п. 1, характеризующаяся тем. что Нафион или другой нафионподобный полимер и ионообменные смолы, содержащие карбоксильные и сульфоновые группы, имеют обменную емкость менее чем 1,5, при этом компоненты а, б, в образуют комплекс, включающий в себя электростатические взаимодействия, водородные и Ванн-дер-Ваальсовы связи.

3. Мембрана по п. 1, которая дополнительно обработана в кислоте или в растворе перекиси водорода в воде (предпочтительно в 0,5-50% растворе, более предпочтительно в 1-20% растворе и наиболее предпочтительно в 5-10% растворе перекиси водорода), при этом обработку проводят при 100°C в течение периода продолжительностью от 30 минут до 6 часов, более предпочтительно от 1 часа до 5 часов и наиболее предпочтительно от 2 часов до 4 часов.

4. Мембрана по п. 3, где указанная кислота является выбранной из группы, включающей азотную, серную, хлороводородную, фосфорную, муравьиную, уксусную кислоты.

5. Мембрана по п. 3, где после обработки в 1 М растворе кислоты указанная мембрана дополнительно обработана в деионизованной дистиллированной воде при 100°C в течение периода продолжительностью от 30 минут до 6 часов, более предпочтительно от 1 часа до 5 часов и наиболее предпочтительно от 2 часов до 4 часов.

6. Применение мембран по любому из пп. 1-5 в низкотемпературных и среднетемпературных топливных элементах с полимерной мембраной (PMFC).

Документы, цитированные в отчете о поиске Патент 2016 года RU2573523C2

ПОЛИМЕРНЫЕ МЕМБРАНЫ ДЛЯ ТОПЛИВНЫХ ЭЛЕМЕНТОВ, ОСНОВАННЫЕ НА ИНТЕРПОЛИЭЛЕКТРОЛИТНЫХ КОМПЛЕКСАХ ПОЛИАНИЛИНА И НАФИОНА ИЛИ ЕГО АНАЛОГОВ (ВАРИАНТЫ) 2010
  • Боева Жанна Александровна
  • Сергеев Владимир Глебович
  • Махаева Елена Евгеньевна
  • Хохлов Алексей Ремович
  • Шин Чонг Кью
  • Годовский Дмитрий Юльевич
  • Ли Минчжон
RU2428767C1
ГАЗОПЛОТНАЯ МОДИФИЦИРОВАННАЯ ПЕРФТОРСУЛЬФОКАТИОНИТОВАЯ МЕМБРАНА И СПОСОБ ЕЕ ПОЛУЧЕНИЯ 2009
  • Лютикова Елена Константиновна
  • Тимофеев Сергей Васильевич
  • Боброва Любовь Петровна
  • Бунина Людмила Ивановна
  • Фатеев Владимир Николаевич
RU2426750C2
US 7659318 B2, 09.02.2010
СПОСОБ ПОЛУЧЕНИЯ ПЕРФТОРИРОВАННЫХ СУЛЬФОКАТИОНИТНЫХ МЕМБРАН МЕТОДОМ ПОЛИВА ИЗ РАСТВОРА 2009
  • Боброва Любовь Петровна
  • Лютикова Елена Константиновна
  • Порембский Владимир Игоревич
  • Фатеев Владимир Николаевич
  • Тимофеев Сергей Васильевич
RU2427593C1
ПОЛИМЕРНАЯ КОМПОЗИЦИЯ ДЛЯ ИЗГОТОВЛЕНИЯ ПРОТОНПРОВОДЯЩИХ МЕМБРАН 2008
  • Лейкин Алексей Юрьевич
  • Лихачев Дмитрий Юрьевич
  • Русанов Александр Львович
RU2364439C1

RU 2 573 523 C2

Авторы

Боева Жанна Александровна

Богомолова Ольга Эрнестовна

Сергеев Владимир Глебович

Чертович Александр Викторович

Даты

2016-01-20Публикация

2013-10-16Подача