АКТИВНАЯ ЛАЗЕРНАЯ ГОЛОВКА САМОНАВЕДЕНИЯ Российский патент 2016 года по МПК F41G7/22 

Описание патента на изобретение RU2573709C2

Изобретение относится к военной технике, а именно к системам управления и самонаведения летательных аппаратов, например ракет, на крупноразмерные морские и наземные цели на фоне местности произвольной формы в любое время суток, в условиях плохой видимости и организованного противодействия.

Известны система наведения ракеты, состоящая из головки совмещения изображений и самонастраивающегося автопилота, а также системы полуактивного самонаведения и оптико-лазерные системы для прицеливания и дальнометрирования, например патенты №1840806, кл. F41G 7/00 от 24.08.1960 г., №2122699, кл. F41G 3/22 от 17.06.1998 г., №2231734, кл. F41G 7/22 от 16.09.2003 г., №2333449, кл. F42G 1/54, F41G 7/22 от 04.12.2006. Наиболее близким техническим решением, выбранным в качестве прототипа, является патент №1840806, кл. F41G 7/00 от 24.08.1960 г. «Система наведения управляемой ракеты, состоящей из головки совмещения изображений и самонастраивающегося автопилота». Она состоит из головки самонаведения (ГС), включающей визир, устройство памяти, анализирующее устройство, и самонастраивающегося автопилота, состоящего, в свою очередь, из блока формирования управляющего сигнала, где формируется управляющий сигнал в зависимости от метода наведения, блока самонастройки и основной части автопилота, в которую входят чувствительные элементы, усилители, коммутационные устройства и т.п.

Работа ГС основана на запоминании и сопровождении информации от всего участка местности, содержащей также изображение цели, полученное телевизионным или тепловизионным устройством. Система самонаведения, имея запомненное изображение, соответствующее точному направлению вектора скорости ракеты на цель, и текущее изображение, полученное с выхода устройства наведения, решает задачу максимального совмещения двух изображений. Величина смещения двух изображений (запомненного и текущего) является сигналом ошибки, управляющим положением ракеты в пространстве, которая поступает в блок формирования управляющего сигнала автопилота. Таким образом, головка самонаведения надежно выдает сигнал управления при визировании малоконтрастных целей на фоне мешающей местности, а также в присутствии ложных целей.

Автопилот является самонастраивающимся, т.е. автопилотом, параметры которого при изменении внешних условий преобразуются в соответствии с законом самонастройки. Он работает в режиме самонастройки как в процессе стабилизации полета ракеты, так и в режиме самонаведения.

Но прототип не лишен недостатков и ограничений. Так, основными факторами, влияющими на дальность обнаружения и распознавания цели телевизионными (ТВ) средствами, кроме уровня освещения наблюдаемой сцены естественными источниками (Солнце, Луна, звезды), является поглощение и рассеяние света в атмосфере. Так, телевизионная ГС при плохих погодных условиях или при неблагоприятных условиях подсвета цели в ряде часто встречающихся ситуаций может полностью терять контраст ее изображения. При применении в ГС тепловизионных (ТПВ) средств к негативным атмосферным факторам добавляются помехи, обусловленные аэродинамическим нагревом входных окон (оптического обтекателя) приемной оптической системы.

Для обеспечения работы в любое время суток ТВ- и ТПВ-каналы должны быть комплексированными. Однако создание единого приемного объектива высокого разрешения для таких комплексированных систем приводит к существенным сложностям в его реализации, а использование независимых каналов приводит к проблеме габаритных ограничений. Последние усугубляются тем, что для распознавания цели в условиях быстрого приближения к ней летательного аппарата пассивные ТВ- И ТПВ-каналы следует дополнять, например, лазерным дальномером.

Все эти отмеченные недостатки приводят к тому, что системы управления и самонаведения летательных аппаратов с использованием пассивных ТВ- или ТПВ-средств не могут обеспечить надежного и высокоточного функционирования в любое время суток при снижении уровней освещенности, при плохой видимости в различных погодных условиях и при организованном противодействии.

Предлагаемая активная лазерная головка самонаведения (ГСН), использующая импульсный метод наблюдения, оптическая и функциональная схемы которой приведены на фиг. 1 и фиг. 2 соответственно, свободна от указанных недостатков. Узел приемно-излучающей системы 1 (см. фиг. 1) стабилизирован в двухосном кардановом подвесе, наружная ось которого установлена в корпусе ГСН. На внутренней оси карданова подвеса, в стабилизированном узле, установлены двухзеркальная телескопическая насадка 2 и первый приемный объектив 11, лазерный излучатель 3 для подсвета цели, оптически сопряженный с первым наклонным дихроичным зеркалом 4, лазерный излучатель дальномера 13, оптически сопряженный со вторым наклонным зеркалом 5. Отраженное целью излучение лазерного излучателя 3 подсвета цели и лазерного излучателя дальномера 13 улавливается двухзеркальной телескопической насадкой 2 и направляется на спектроделитель 9, выполненный в виде дихроичного зеркала. Отраженное им излучение с помощью третьего плоского зеркала 6, первого узкополосного оптического фильтра 7 и второго объектива 8 фокусируется на приемную площадку фотоприемного устройства (ФПУ) дальномера 13. Прошедшее через спектроделитель 9 излучение с помощью второго узкополосного оптического фильтра 10 и первого объектива 11 фокусируется на приемную площадку ФПУ канала изображения 12. На осях карданова подвеса установлены роторы двигателей, датчики угла и угловой скорости системы стабилизации и слежения.

Фотоприемное устройство 12 канала изображения, в отличие от упомянутых выше пассивных (телевизионных и тепловизионных) систем, формирует изображение объектов, находящихся только на определенной дальности, которая задается дальномерным каналом. Пассивные же системы формируют изображение пространства, попадающего в поле зрения со всех дальностей, и поэтому принимают помехи (отражения, рассеивания) со всей трассы визирования цели. Поэтому качество изображения у активных (с подсветом) лазерных систем со стробированием сигнала по дальности существенно выше, чем у пассивных, где такое стробирование невозможно.

Стробирование принимаемых сигналов - одна из функций предлагаемой ГСН, осуществляемая с помощью блока синхронизации и стробирования, работа которого строится на основе обработки сигналов, полученных от лазерного дальномера, и управления лазером подсветки и фотоприемным устройством канала изображения. Именно эта функция отличает предлагаемую ГСН от описанных выше и известных ранее, а также имеет следствием указанные выше конструктивные отличия предлагаемой ГСН от известных: наличие лазерного излучателя подсветки, дальномера, узкополосных лазерных фильтров, зеркал, включая дихроичные, блока синхронизации и стробирования.

На фиг. 2 показана функциональная схема предлагаемой ГСН, где отражено взаимодействие ее основных компонентов. В ней приемно-излучающая оптическая система 1 управляется по углу двухосевым блоком стабилизации и слежения 20. Лазерный излучатель подсвета цели 3 и фотоприемное устройство 12 канала изображения по времени управляются блоком синхронизации и стробирования 14, который формирует временные стробы для ФПУ 12 по сигналам дальномерного канала. Узкополосные оптические фильтры 7 и 10 (см. фиг. 1) перед ФПУ 12 и ФПУ дальномера 13 необходимы для минимизации фоновых засветок (и шумов) в фотоприемных каналах. Сигнальная информация с выхода ФПУ 12 поступает на первый вход блока обнаружения и распознавания 15, на второй вход которого поступает сигнал эталонного изображения цели с первого выхода блока памяти эталонного изображения 16. Сигнал изображения обнаруженной цели поступает на первый вход блока выделения координат заданной точки цели 17, на второй вход которого поступает сигнал эталонного изображения точки прицеливания со второго выхода блока памяти эталонного изображения 16.

Полученные координаты точки прицеливания блока управления слежением 18 по первому выходу подаются на вход блока наведения носителя 19, а по второму выходу - на вход двухосевой системы стабилизации и слежения 20.

Приемно-излучающая оптическая система может быть реализована на зеркальных (металлооптических элементах) в сочетании с линзовыми. Узкополосные оптические фильтры могут быть интерференционными (как и дихроичные зеркала).

Электронные блоки (блок синхронизации и стробирования, блок обнаружения и распознавания, блок памяти эталонного изображения, блок выделения координат заданной точки цели, узлы дальномера) могут быть реализованы на элементной базе фирм Xilinx (ПЛИС) и Texas Instruments (ЦПОС).

Основными компонентами блока стабилизации и слежения могут быть моментные двигатели типа ДБ773.031 разработки ОАО «НПК Карат», инерциальная система типа ADIS 16383 фирмы Analog Device и датчики угла типа DS-58-32 фирмы Netser, а также электронная схема управления двигателями, которая может быть реализована на элементной базе фирмы Texas Instruments, в том числе с применением процессорных микросхем серии TMS.

Фотоприемное устройство канала изображения может быть реализовано, например, на основе полноформатного матричного фотоприемника фирмы «Силар», г. Санкт-Петербург с наличием в схеме его управления цепей синхронизации принимаемых сигналов.

Малогабаритные лазерные излучатели могут быть использованы в классе твердотельных лазеров разработки ОАО «Государственный оптический институт» им. С.И. Вавилова.

Похожие патенты RU2573709C2

название год авторы номер документа
АКТИВНАЯ ЛАЗЕРНАЯ ГОЛОВКА САМОНАВЕДЕНИЯ 2016
  • Артамонов Сергей Иванович
  • Архипова Людмила Николаевна
  • Белобородов Виктор Павлович
  • Бурец Галина Александровна
  • Варзанов Анатолий Викторович
  • Денисов Ростислав Николаевич
  • Колосов Герман Геннадиевич
  • Королёв Александр Константинович
  • Купренюк Виктор Иванович
  • Немков Виктор Алексеевич
  • Семёнов Дмитрий Сергеевич
  • Тарасонов Михаил Павлович
  • Трифонов Кирилл Владимирович
RU2650789C2
Оптико-электронная многоканальная головка самонаведения 2020
  • Бондаренко Владимир Александрович
  • Колосов Герман Геннадьевич
  • Королев Александр Константинович
  • Павлова Валерия Анатольевна
  • Тупиков Владимир Алексеевич
  • Бутин Борис Сергеевич
  • Кузин Сергей Борисович
  • Чураков Святослав Игоревич
RU2756170C1
ОПТИКО-ЭЛЕКТРОННАЯ СИСТЕМА ПОИСКА И СОПРОВОЖДЕНИЯ ЦЕЛИ 2007
  • Алексеев Юрий Витальевич
  • Балоев Виллен Арнольдович
  • Белозёров Альберт Федорович
  • Вахитов Мурат Ахметович
  • Добрынин Александр Александрович
  • Дорофеева Маргарита Васильевна
  • Иванов Владимир Петрович
  • Приходько Виктор Никитович
  • Сунцов Владимир Вячеславович
  • Хисамов Рамис Шарафович
  • Яцык Владимир Самуилович
RU2335728C1
ТЕЛЕВИЗИОННО-ЛАЗЕРНЫЙ ВИЗИР-ДАЛЬНОМЕР 2012
  • Броун Федор Моисеевич
  • Волков Ринад Исмагилович
  • Филатов Михаил Иванович
  • Кузнецов Василий Иванович
RU2515766C2
Комбинированная многоканальная головка самонаведения 2017
  • Павлова Валерия Анатольевна
  • Тупиков Владимир Алексеевич
  • Вакулов Павел Сергеевич
  • Королев Александр Константинович
  • Семенов Дмитрий Сергеевич
  • Колосов Герман Геннадьевич
  • Бутин Борис Сергеевич
  • Андреев Константин Евгеньевич
RU2693028C2
КОМБИНИРОВАННАЯ ОПТИКО-ЭЛЕКТРОННАЯ СИСТЕМА 2014
  • Балоев Виллен Арнольдович
  • Дорофеева Маргарита Васильевна
  • Иванов Владимир Петрович
  • Яцык Владимир Самуилович
RU2541494C1
ЛАЗЕРНАЯ ПОЛУАКТИВНАЯ ГОЛОВКА САМОНАВЕДЕНИЯ 2010
  • Филимонов Владимир Яковлевич
  • Марков Николай Николаевич
RU2439477C1
СПОСОБ СТРЕЛЬБЫ УПРАВЛЯЕМЫМ СНАРЯДОМ С ЛАЗЕРНОЙ ПОЛУАКТИВНОЙ ГОЛОВКОЙ САМОНАВЕДЕНИЯ 2015
  • Хохлов Николай Иванович
  • Гусев Андрей Викторович
  • Шигин Александр Викторович
  • Рабинович Владимир Исаакович
  • Подчуфаров Юрий Борисович
  • Ларин Дмитрий Викторович
  • Ларин Андрей Викторович
RU2584210C1
ЛАЗЕРНЫЙ ДАЛЬНОМЕР (ВАРИАНТЫ) 2007
  • Санников Петр Алексеевич
  • Бурский Вячеслав Александрович
RU2340871C1
СПОСОБ ФОРМИРОВАНИЯ ИЗОБРАЖЕНИЯ ЦЕЛИ ДЛЯ ОБЕСПЕЧЕНИЯ ПРИМЕНЕНИЯ ТАКТИЧЕСКИХ УПРАВЛЯЕМЫХ РАКЕТ С ОПТИКО-ЭЛЕКТРОННОЙ ГОЛОВКОЙ САМОНАВЕДЕНИЯ 2021
  • Каплин Александр Юрьевич
  • Степанов Михаил Георгиевич
RU2776005C1

Иллюстрации к изобретению RU 2 573 709 C2

Реферат патента 2016 года АКТИВНАЯ ЛАЗЕРНАЯ ГОЛОВКА САМОНАВЕДЕНИЯ

Изобретение может быть использовано в системах управления и самонаведения летательных аппаратов, например ракет. Головка самонаведения содержит оптическую систему, выполненную с возможностью угловых отклонений относительно двух ортогональных осей подвеса по команде от двухосевой системы стабилизации и слежения, последовательно соединенные блок обнаружения и распознавания, блок выделения координат заданной точки цели и блок управления слежением, а также блок памяти и хранения эталонного изображения цели, задаваемого в виде предстартового полетного задания. Введены лазерный излучатель подсвета цели, плоские наклонные зеркала, спектроделитель, первый и второй узкополосные оптические фильтры, первый и второй объективы, лазерный дальномер, блок синхронизации и стробирования. Технический результат - обеспечение надежного и высокоточного функционирования в любое время суток при снижении уровней освещенности, плохой видимости в различных погодных условиях и при организованном противодействии. 2 ил.

Формула изобретения RU 2 573 709 C2

Активная лазерная головка самонаведения, содержащая оптическую систему, в фокусе которой установлено фотоприемное устройство канала изображения, и выполненную с возможностью угловых отклонений относительно двух ортогональных осей подвеса по команде от двухосевой системы стабилизации и слежения, последовательно соединенные блок обнаружения и распознавания, блок выделения координат заданной точки цели и блок управления слежением, а также блок памяти и хранения эталонного изображения цели, задаваемого в виде предстартового полетного задания, при этом выход фотоприемного устройства соединен со входом блока обнаружения и распознавания, выход блока памяти и хранения эталонного изображения соединен со вторым входом блока обнаружения и распознавания цели, первый выход блока управления слежением подключен к входу двухосевой системы стабилизации и слежения, а его второй выход соединен со входом системы управления носителем, отличающая тем, что в нее введены лазерный излучатель подсвета цели, первое, второе и третье плоское наклонное зеркало, спектроделитель, первый и второй узкополосный оптический фильтр, первый и второй объектив, лазерный дальномер, блок синхронизации и стробирования, при этом первое плоское наклонное зеркало выполнено дихроичным и оптически сопряжено с лазерным излучателем подсвета цели, спектроделитель установлен внутри приемной оптической системы и оптически сопряжен с последовательно установленными третьим плоским наклонным зеркалом, первым узкополосным оптическим фильтром и первым объективом, в фокусе которого установлено фотоприемное устройство лазерного дальномера, а также с последовательно установленными вторым узкополосным оптическим фильтром и вторым объективом, в фокусе которого установлено фотоприемное устройство канала изображения, выход лазерного дальномера соединен со входом блока синхронизации и стробирования, первый выход которого соединен со входом дальномера, второй выход - со входом лазерного излучателя подсвета цели, а третий выход - со вторым входом фотоприемного устройства канала изображения.

Документы, цитированные в отчете о поиске Патент 2016 года RU2573709C2

СИСТЕМА НАВЕДЕНИЯ УПРАВЛЯЕМОЙ РАКЕТЫ, СОСТОЯЩАЯ ИЗ ГОЛОВКИ СОВМЕЩЕНИЯ ИЗОБРАЖЕНИЙ И САМОНАСТРАИВАЮЩЕГОСЯ АВТОПИЛОТА 1960
  • Туманов Анатолий Васильевич
  • Коновалов Евгений Алексеевич
  • Дятлов Юрий Митрофанович
  • Исаев Николай Семенович
SU1840806A1
ОПТИКО-ЭЛЕКТРОННЫЙ СЛЕДЯЩИЙ КООРДИНАТОР 2011
  • Бурец Галина Александровна
  • Горохов Михаил Михайлович
  • Денисов Ростислав Николаевич
  • Нужин Андрей Владимирович
  • Плешанов Юрий Васильевич
  • Пуйша Александр Эдуардович
RU2476826C1
US 2004004155 A1, 08.01.2004
US 2007075182 A1, 05.04.2007
US 6606066 B1, 12.08.2003.

RU 2 573 709 C2

Авторы

Артамонов Сергей Иванович

Бурец Галина Александровна

Варзанов Анатолий Владимирович

Горохов Михаил Михайлович

Денисов Ростислав Николаевич

Купренюк Виктор Иванович

Маркин Вячеслав Александрович

Плешанов Юрий Васильевич

Пуйша Александр Эдуардович

Тарасонов Михаил Павлович

Даты

2016-01-27Публикация

2013-10-03Подача