СПОСОБ ПОЛУЧЕНИЯ ПЕНТАОКСИДА ВАНАДИЯ Российский патент 2016 года по МПК C01G31/02 C22B3/10 C22B3/12 C22B34/22 

Описание патента на изобретение RU2574916C1

Изобретение относится к области цветной металлургии, а именно к получению губчатого титана магниетермическим восстановлением тетрахлорида титана, в частности к химической очистке тетрахлорида титана от примесей ванадия и к переработке отходов химической очистки с получением готового товарного продукта - пентаоксида ванадия.

Губчатый титан получают восстановлением тетрахлорида титана магнием при высоких температурах. Для этого химические реагенты (тетрахлорид титана и магния), участвующие в процессе восстановления, подвергают высокой степени очистки. При химической очистке тетрахлорида титана от примесей медным порошком образуется полупродукт - технический окситрихлорид ванадия, который перерабатывают на пентаоксид ванадия различными методами (ст. Освоение технологии производства пятиокиси ванадия из технического окситрихлорида ванадия. - Яковенко Б.И., Кунгина Н.И., Перминова А.С., Ельцов Б.И., Бокман Г.Ю. - Ж. Цветная металлургия, 1976, №11, стр. 29-30).

Недостатком данного способа является то, что пентаоксид ванадия, получаемый из окситрихлорида ванадия при химической очистке тетрахлорида титана, содержит значительное количество примесей в виде соединений титана, кремния, железа, хрома и других соединений, которые переходят из окситрихлорида ванадия и ухудшают его качественные характеристики. Это снижает использование пентаоксида ванадия в таких отраслях промышленности, как фармацевтика, аналитическая химия, электроника и космическая техника.

Известен способ получения пентаоксида ванадия (пат. РФ №2172789, опубл. 27.08.2001, бюл. 24), включающий разложение окситрихлорида ванадия щелочным раствором, содержащим гидроксид натрия с добавками хлорида натрия и аммонийсодержащего неорганического соединения, с получением метаванадата аммония, который затем отделяют от маточного раствора, осадок промывают, сушат и прокаливают с получением пентаоксида ванадия. В маточные растворы, содержащие ванадий, хлориды и нитраты натрия и аммония, вводят щелочной реагент - гидроксид натрия до концентрации 100 г/л и повторно используют для разложения окситрихлорида ванадия. Это позволяет повысить производительность процесса за счет сокращения расхода промывных вод, необходимых для промывки, уменьшения времени промывки и сокращения потерь ванадия с промводами.

Недостатком способа является то, что степень извлечения ванадия в готовый продукт низкая и составляет 86%, что приводит к большим потерям ванадия с промводами и создает дополнительные операции доизвлечения ванадия из сточных вод, так как примесь ванадия является экологически вредным компонентом для окружающей среды.

Известен способ получения пентаоксида ванадия (пат. РФ №2497964, опубл. 10.11.2013), включающий разложение окситрихлорида ванадия щелочным раствором в виде смеси карбоната натрия с гидроксидом натрия при массовом соотношении (0,05-0,1):1 и при непрерывном перемешивании с получением пульпы, которую выдерживают, фильтруют, промывают водой, вновь фильтруют с отделением маточного раствора метаванадата натрия, который затем обрабатывают твердым аммонийсодержащим неорганическим соединением с получением пульпы метаванадата аммония. Осадок метаванадата аммония отделяют от маточного раствора, промывают, сушат и прокаливают с получением пентаоксида ванадия. Данный способ позволяет повысить степень извлечения ванадия в готовый продукт до 98,5-98,8 мас.%.

Недостатком данного способа является то, что пентаоксид ванадия содержит высокое содержание примесей (железо 0,03-0,07 мас.%, кремний 0,03-0,07 мас.%, марганец 0,01 мас.%, сера 0,005 мас.%, фосфор 0,01 мас.%, хлор 0,01 мас.%), которые не позволяют получить пентаоксид ванадия особой чистоты. Это значительно ухудшает качество продукта и снижает использование пентаоксида ванадия в таких отраслях промышленности, как фармацевтика, аналитическая химия, электроника и космическая техника. Кроме того, указанные примеси не позволяют вести процесс получения пентаоксида ванадия с достаточной производительностью, так как фильтры забиваются коллоидными соединениями кремния и требуется время на их очистку, промывку или замену на новые.

Известен способ получения пентаоксида ванадия (пат. РФ №2175990, опубл. 20.11.2001, бюл. 32), по количеству общих признаков принятый за ближайший аналог-прототип и включающий заливку окситрихлорида ванадия в щелочной раствор (2-3 н. раствор карбоната натрия) до рН 8,0, обработку раствором соляной кислоты до рН=1-2, нагрев до температуры 60-100°С, выдержку 1-3 часа, нейтрализацию щелочным реагентом, например гидроксидом натрия до рН=6-8, загрузку в подготовленный раствор твердого аммонийсодержащего неорганического соединения, например хлорида и/или нитрата аммония, с получением пульпы, фильтрацию, отделение осадка метаванадата аммония от маточного раствора, промывку, сушку и прокаливание при температуре 550°С. Это позволяет снизить потери ванадия с отходами производства.

Недостатком данного способа является то, что пентаоксид ванадия, получаемый из окситрихлорида ванадия, содержит значительное количество примесей в виде соединений титана, кремния, железа, хрома и др., которые переходят из окситрихлорида ванадия в пентаоксид ванадия и снижают его качественные характеристики. Это не позволяет использовать пентаоксид ванадия в таких отраслях промышленности, как фармацевтика, аналитическая химия, электроника и космическая техника.

Технический результат направлен на устранение недостатков прототипа и позволяет снизить содержание вредных примесей в готовом продукте - пентаоксиде ванадия и тем самым получить продукт марки «особо чистый» за счет получения особо чистого окситрихлорида ванадия с пониженным содержанием примесей, таких как: титан (0,0002-0,0004 мас.%), кремний (0,0003 мас.%), хром (0,0005 мас.%), железо (0,0005 мас.%). Это позволяет использовать пентаоксид ванадия в таких отраслях промышленности, как фармацевтика, аналитическая химия, электроника и космическая техника.

Задачей, на решение которой направлено изобретение, является снижение вредных примесей в пентаоксиде ванадия и расширение областей его применения в промышленности.

Поставленная задача решается тем, что в способе получения пентаоксида ванадия, включающем предварительную обработку окситрихлорида ванадия раствором соляной кислоты, разложение окситрихлорида ванадия щелочным реагентом с получением метаванадата натрия, отделение осадка, загрузку в него твердого аммонийсодержащего неорганического соединения с получением пульпы метаванадата аммония, перемешивание, отделение от маточного раствора осадка метаванадата аммония, его промывку, сушку и прокалку с получением пентаоксида ванадия, новым является то, что перед обработкой раствором соляной кислоты окситрихлорид ванадия подвергают ректификационной очистке до содержания в нем титана 0,002-0,005 мас.%, затем очищенный окситрихлорид ванадия загружают в герметичный реактор, заполненный аргоном, подают раствор соляной кислоты при непрерывном перемешивании при соотношении соляная кислота:окситрихлорид ванадия, равном 1:(15-25), полученную смесь отстаивают, отделяют твердый осадок, а осветленную часть вновь подвергают ректификационной очистке с получением особо чистого окситрихлорида ванадия, который направляют на процесс разложения с получением пентаоксида ванадия особой чистоты.

Кроме того, окситрихлорид ванадия обрабатывают раствором соляной кислоты с концентрацией 3,5-4,5 н.

Кроме того, окситрихлорид ванадия обрабатывают раствором соляной кислоты при скорости подачи при скорости подачи 1-10 дм3/час.

Кроме того, окситрихлорид ванадия перемешивают при обработке раствором соляной кислоты в течение 10-30 минут.

Кроме того, окситрихлорид ванадия подвергают ректификационной очистке при температуре 126,5-136°С.

Кроме того, окситрихлорид ванадия подвергают ректификационной очистке при массовом расходе 20-30 кг/час.

Кроме того, твердый остаток отделяют методом декантации.

Кроме того, аргон задают в герметичный реактор до избыточного давления 9,6-29,4 кПа.

Кроме того, особо чистый окситрихлорид ванадия разделяют на две части, одну часть в качестве готового товарного продукта направляют потребителю, а другую - на получение особо чистого пентаоксида ванадия.

Подобранная опытным путем новая последовательность проведения операций получения пентаоксида ванадия из окситрихлорида ванадия позволяет снизить содержание вредных примесей в готовом продукте, повысить степень его чистоты и тем самым получить продукт особо чистый по качественным характеристикам, что позволяет его использовать в таких отраслях промышленности, как фармацевтика, аналитическая химия, электронная и космическая промышленность.

Применение раствора соляной кислоты в качестве реагента-подкислителя для увеличения частичного гидролиза примесей титана в окситрихлориде ванадия позволяет ускорить процесс осаждения титановых соединений из окситрихлорида ванадия по реакциям:

TiCl4+H2O→TiOCl2↓+2HCl

TiCl4+2H2O→TiO2↓+4HCl

TiCl4+4H2O→Ti(OH)4↓+4HCl

Частичный гидролиз позволяет осадить твердые примеси из окситрихлорида ванадия и тем самым получить продукт особо чистый по качественным характеристикам.

Проведение ректификационной очистки окситрихлорида ванадия позволяет снизить содержание таких вредных примесей, как соединения кремния и титана, и тем самым получить продукт особо чистый по качественным характеристикам.

Подбор определенного режима проведения процесса получения пентаоксида ванадия, а именно температура и время перемешивания, позволяет значительно уменьшить количество примесей за счет перехода их в твердую фазу из окситрихлорида ванадия и тем самым повысить степень извлечения ванадия в готовый продукт.

Проведенный заявителем анализ уровня техники, включающий поиск по патентным и научно-техническим источникам информации, и выявление источников, содержащих сведения об аналогах заявленного изобретения, позволил установить, что заявитель не обнаружил источник, характеризующийся признаками, тождественными (идентичными) всем существенным признакам изобретения. Определение из перечня выявленных аналогов прототипа, как наиболее близкого по совокупности признаков аналога, позволило установить совокупность существенных по отношению к усматриваемому заявителем техническому результату отличительных признаков в заявленном способе получения пентаоксида ванадия, изложенных в пунктах формулы изобретения. Следовательно, заявленное изобретение соответствует условию ″новизна″.

Для проверки соответствия заявленного изобретения условию ″изобретательский уровень″ заявитель провел дополнительный поиск известных решений, чтобы выявить признаки, совпадающие с отличительными от прототипа признаками заявленного способа. В результате поиска выявлен способ извлечения ванадия, образующегося в процессе очистки тетрахлорида титана от примесей ванадия медным порошком (см. Авт. свид. СССР №133232, опубл. 1960, бюл. №21). По данному способу полученные в процессе очистки пульпы и осадки подвергают разгонке с получением тетрахлорида титана и промежуточного продукта, который обогащают ванадием ректификацией в одну или несколько стадий. Однако данный способ не позволяет получить особо чистый пентаоксид ванадия из-за высокого содержания примесей титана, кремния, хрома и других соединений в исходном продукте. В изобретении, предложенном заявителем, заявлена новая совокупность признаков, выразившаяся в новой последовательности действий во времени, в новых дополнительных стадиях процесса и в новых условиях осуществления действий для получения пентаоксида ванадия, и они не вытекают явным образом для специалиста, поскольку из уровня техники, определенного заявителем, не выявлено влияние предусматриваемых существенными признаками заявленного изобретения преобразований для достижения технического результата.

Следовательно, заявленное изобретение соответствует условию ″изобретательский уровень″.

Промышленную применимость предлагаемого изобретения подтверждает следующий пример осуществления способа.

Пример 1

Технический окситрихлорид ванадия представляет собой смесь окситрихлорида ванадия с тетрахлоридом титана и тетрахлоридом кремния, а также с другими оксидно-хлоридными соединениями титана, кремния, хрома и железа. Компоненты смеси неограниченно растворяются друг в друге. Технический окситрихлорид ванадия с массовой долей VOCl3 от 20 до 40% получают в процессе химической очистки тетрахлорида титана медным порошком (кн. Металлургия титана. - Сергеев В.В., Галицкий Н.В., Киселев В.П., Козлов В.М. - М.: Металлургия, 1971. - с. 136-146). Технический окситрихлорид ванадия заливают в куб-испаритель, нагревают до температуры испарения от 126°С до 136°С, подают в колонну ректификации тарельчатого типа при массовом расходе технического окситрихлорида ванадия 25 кг/час. Процесс ректификации с продолжительностью работы колонны 6 часов основан на разности температур кипения тетрахлорида титана (136°С) и окситрихлорида ванадия (126°С). В связи с тем, что окситрихлорид ванадия имеет более низкую температуру кипения, его содержание в парообразной смеси больше, чем в жидкости. При взаимодействии фаз происходит массо- и теплообмен, обусловленный стремлением системы к равновесию (см. кн. Производство четыреххлористого титана. - Байбеков Μ.К., Ποпοв В.Д., Чепрасов И.М. - М.: Металлургия, 1987, стр. 69-92). Процесс ректификации проводят при непрерывном аналитическом контроле содержания массовой доли титана и кремния в продукте. При достижении содержания массовой доли титана в окситрихлориде ванадия 0,005 мас.%, кремния 0,003 мас.%, хрома 0,005 мас.% (при контроле проб на анализ) получают окситрихлорид ванадия, соответствующий марке «ванадия окситрихлорид очищенный» в соответствии с ТУ 1718-436-05785388-2005.

Затем очищенный окситрихлорид ванадия в количестве 1 м3 заливают с помощью погружного насоса в герметичный реактор с крышкой, на которой установлена мешалка с электродвигателем. Предварительно реактор заполняют аргоном чистым марки А до избыточного давления в реакторе 10,5 кПа. Раствор 4 н. соляной кислоты (ГОСТ 14261-77 марки ОСЧ 20-4) в количестве 50 дм3 (поддерживая соотношение соляная кислота:окситрихлорид ванадия 1:20) при скорости подачи 3 дм3/час подают в герметичный реактор на поверхность окситрихлорида ванадия при непрерывном перемешивании в течение 15 минут. В результате реакции образуются соединения:

TiCl4+H2O→TiOCl2↓+2HCl

TiCl4+2H2O→TiO2↓+4HCl

TiCl4+4H2O→Ti(OH)4↓+4HCl

которые выпадают в осадок в реакторе. Смесь выдерживают в течение 24 часов и отделяют осветленную часть декантацией. Осветленную часть окситрихлорида ванадия загружают при массовом расходе 20 кг/час в куб-испаритель, нагревают до температуры 126°С и подвергают повторной ректификационной разгонке с получением особо чистого окситрихлорида ванадия с пониженным содержанием примесей. В реактор разложения насосом типа ТН-70 загружают 60 кг карбоната натрия (ГОСТ 5100-85), затем в реактор заливают 800 кг гидроксида натрия (СТО 48-349.4-2009) при массовом соотношении 0,1:1 карбоната натрия к гидроксиду натрия, перемешивают в течение 15 минут и начинают загружать особо чистый окситрихлорид ванадия и по рН-метру следят за рН раствора. Окситрихлорид ванадия загружают до рН=7 в количестве 800 кг при скорости подачи окситрихлорида ванадия в щелочной раствор равной 250 кг/час. Взаимодействие очищенного окситрихлорида ванадия с гидроксидом натрия происходит по реакции:

VOCl3+4NaOH=NaVO3+3NaCl+2 H2O

TiCl4+4NaOH=TiO(OH)2+4NaCl+H2O

В результате реакций получают маточный раствор метаванадата натрия (СТО 48-349.1-2008) и твердый осадок диоксида титана - в виде титано-ванадиевого кека (СТО 48-386.1-2006). Полученную пульпу подвергают фильтрации на фильтр-прессе. Отделенный осадок диоксида титана промывают горячей водой, затем гидроксидом натрия и направляют на дальнейшую переработку. А маточный раствор метаванадата натрия перед кристаллизацией нагревают до температуры 55°С, для чего в рубашку реактора подают пар, затем насосом типа ТН-70 подают в реактор на процесс кристаллизации при обработке хлористым аммонием (ГОСТ 22-73) из расчета 2,6 кг на 1 кг пентаоксида ванадия или аммиачной селитрой - нитрат аммония (ГОСТ 2-85) из расчета 4,2 кг на 1 кг пентаоксида ванадия, по реакции:

NaVO3+NH4Cl=NH4VO3+NaCl

NaVO3+NH4NO3=NH4VO3+NaNO3

При перемешивании в результате реакции образуется пульпа с метаванадатом аммония, которую фильтруют на барабанном вакуум-фильтре БОН-5. Температуру пульпы при загрузке окситрихлорида ванадия поддерживают 85°С. При фильтрации одновременно осуществляется промывка осадка от водорастворимых солей артезианской водой. Полученный осадок метаванадата аммония (ТУ 6-09-517-2002) направляют в прокалочную печь, в которой при температуре 400-660°С метаванадат аммония разлагается:

2NH4VO3=V2O5+2NH3+H2O

В результате получают готовый продукт - пентаоксид ванадия, содержание основных примесей в котором составляет: титана - 0,0002-0,0004 мас.%, кремния - 0,0003 мас.%, хрома - 0,0005 мас.%, железа - 0,0005 мас.%.

Таким образом, предложенный способ получения пентаоксида ванадия при новой последовательности действий позволяет снизить содержание вредных примесей в окситрихлориде ванадия, а следовательно, и в готовом продукте - особо чистом пентаоксиде ванадия. Содержание примесей снижено, например титана в 10-12 раз, кремния в 10-11 раз, хрома в 10-12 раз, олова в 10-11 раз, свинца в 2-3 раза, алюминия в 10-11 раз, железа в 2-3 раза. Это позволяет использовать пентаоксид ванадия в таких отраслях промышленности, как фармацевтика, аналитическая химия, электроника и космическая техника. Перспективным является и применение пентаоксида ванадия в различных электротехнических устройствах, оптических приборах, при получении высокодисперсных порошков и нанокомпозитов, при синтезе катализаторов в качестве прокурсоров безводных оксидных соединений.

Похожие патенты RU2574916C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ ПЕНТАОКСИДА ВАНАДИЯ 2012
  • Тетерин Валерий Владимирович
  • Леханов Владимир Федорович
  • Бездоля Илья Николаевич
  • Рымкевич Дмитрий Анатольевич
RU2497964C1
СПОСОБ КОМПЛЕКСНОЙ ПЕРЕРАБОТКИ ТЕХНОГЕННОГО ВАНАДИЕВОГО СЫРЬЯ 2001
  • Кудрявский Ю.П.
  • Трапезников Ю.Ф.
  • Стрелков В.В.
  • Курносенко В.В.
  • Потеха С.И.
  • Демидов А.Е.
  • Карпов А.А.
RU2192489C2
СПОСОБ ПЕРЕРАБОТКИ ВАНАДИЕВОГО ПРОМПРОДУКТА 2000
  • Кудрявский Ю.П.
  • Потеха С.И.
  • Фирстов Г.А.
  • Трапезников Ю.Ф.
  • Шундиков Н.А.
RU2175358C1
СПОСОБ КОМПЛЕКСНОЙ ПЕРЕРАБОТКИ И ОБЕЗВРЕЖИВАНИЯ ПОЛИМЕТАЛЛИЧЕСКИХ ОТХОДОВ ПРОИЗВОДСТВА 2001
  • Кудрявский Ю.П.
  • Трапезников Ю.Ф.
  • Казанцев В.П.
  • Анашкин В.С.
  • Беккер В.Ф.
  • Липунов И.Н.
  • Потеха С.И.
  • Рахимова О.В.
  • Бирюков Г.К.
  • Стрелков В.В.
RU2194782C1
СПОСОБ ПОЛУЧЕНИЯ ПЕНТАОКСИДА ВАНАДИЯ 2000
  • Кудрявский Ю.П.
  • Колесников В.А.
  • Трапезников Ю.Ф.
  • Шундиков Н.А.
  • Шаламов А.В.
  • Леханов В.Ф.
RU2172789C1
СПОСОБ ПОЛУЧЕНИЯ ПЕНТАОКСИДА ВАНАДИЯ 2000
  • Кудрявский Ю.П.
  • Колесников В.А.
  • Трапезников Ю.Ф.
RU2175990C1
Способ получения пентаоксида ванадия высокой чистоты 2023
  • Нечаев Андрей Валерьевич
  • Смирнов Александр Всеволодович
  • Лянгузов Игорь Валентинович
  • Косилов Павел Денисович
  • Зайцева Татьяна Николаевна
RU2817727C1
СПОСОБ ПЕРЕРАБОТКИ ВАНАДИЙСОДЕРЖАЩИХ ПРОМПРОДУКТОВ ПРОИЗВОДСТВА 2000
  • Кудрявский Ю.П.
  • Трапезников Ю.Ф.
  • Погудин О.В.
RU2176676C1
СПОСОБ ПОЛУЧЕНИЯ ПЕНТАОКСИДА ВАНАДИЯ ИЗ ТЕХНОГЕННОГО СЫРЬЯ 2000
  • Кудрявский Ю.П.
  • Трапезников Ю.Ф.
  • Стрелков В.В.
  • Каменских А.А.
  • Карпов А.А.
  • Демидов А.Е.
RU2175681C1
СПОСОБ ПЕРЕРАБОТКИ ТЕХНИЧЕСКОГО ПЕНТАОКСИДА ВАНАДИЯ 2001
  • Кудрявский Ю.П.
  • Казанцев В.П.
  • Трапезников Ю.Ф.
  • Стрелков В.В.
  • Глухих С.М.
  • Бездоля И.Н.
RU2207392C1

Реферат патента 2016 года СПОСОБ ПОЛУЧЕНИЯ ПЕНТАОКСИДА ВАНАДИЯ

Изобретение относится к способу получения пентаоксида ванадия. Способ включает ректификационную очистку окситрихлорида ванадия до содержания примесей титана 0,002-0,005 мас.%. Затем в герметичный реактор, заполненный аргоном до избыточного давления 9,6-29,4 кПа, загружают очищенный окситрихлорид ванадия, подают раствор соляной кислоты при соотношении соляная кислота: окситрихлорид ванадия 1:(15-25). Далее ведут отстаивание и отделение твердого осадка. Осветленную часть вновь подвергают ректификационной очистке с получением особо чистого окситрихлорида ванадия, который обрабатывают щелочным раствором с получением метаванадата натрия, отделяют из него осадок, загружают в него твердое аммонийсодержащее неорганическое соединение с получением пульпы метаванадата аммония. Пульпу перемешивают, отделяют осадок метаванадата аммония от маточного раствора. Осадок промывают, сушат и прокаливают с получением особо чистого пентаоксида ванадия. Техническим результатом является снижение примесей в готовом продукте - особо чистом пентаоксиде ванадия. 8 з.п. ф-лы, 1 пр.

Формула изобретения RU 2 574 916 C1

1. Способ получения пентаоксида ванадия, включающий разложение окситрихлорида ванадия щелочным реагентом с получением маточного раствора метаванадата натрия и отделением осадка, загрузку в маточный раствор метаванадата натрия твердого аммонийсодержащего неорганического соединения с получением пульпы метаванадата аммония, перемешивание, отделение от маточного раствора осадка метаванадата аммония, его промывку, сушку и прокалку с получением пентаоксида ванадия, отличающийся тем, что перед щелочным разложением окситрихлорид ванадия подвергают ректификационной очистке до содержания в нем титана 0,002-0,005 мас.%, затем очищенный окситрихлорид ванадия загружают в герметичный реактор, заполненный аргоном, обрабатывают раствором соляной кислоты путем подачи его при непрерывном перемешивании при соотношении соляная кислота:окситрихлорид ванадия, равном 1 : (15-25), полученную смесь отстаивают, отделяют твердый осадок, а осветленную часть вновь подвергают ректификационной очистке с получением особо чистого окситрихлорида ванадия, который направляют на щелочное разложение с получением пентаоксида ванадия особой чистоты.

2. Способ по п. 1, отличающийся тем, что окситрихлорид ванадия обрабатывают соляной кислотой с концентрацией 3,5-4,5 н.

3. Способ по п. 1, отличающийся тем, что окситрихлорид ванадия обрабатывают соляной кислотой при скорости подачи 1-10 дм3/час.

4. Способ по п. 1, отличающийся тем, что окситрихлорид ванадия перемешивают при обработке соляной кислотой в течение 10-30 минут.

5. Способ по п. 1, отличающийся тем, что окситрихлорид ванадия подвергают ректификационной очистке при температуре 126,5-136°С.

6. Способ по п. 1, отличающийся тем, что окситрихлорид ванадия подвергают ректификационной очистке при массовом расходе 20-30 кг/час.

7. Способ по п. 1, отличающийся тем, что твердый остаток отделяют методом декантации.

8. Способ по п. 1, отличающийся тем, что аргон подают в герметичный реактор до избыточного давления 9,6-29,4 кПа.

9. Способ по п. 1, отличающийся тем, что особо чистый окситрихлорид ванадия разделяют на две части, одну часть в качестве готового товарного продукта направляют потребителю, а другую - на получение особо чистого пентаоксида ванадия.

Документы, цитированные в отчете о поиске Патент 2016 года RU2574916C1

СПОСОБ ПОЛУЧЕНИЯ ПЕНТАОКСИДА ВАНАДИЯ 2000
  • Кудрявский Ю.П.
  • Колесников В.А.
  • Трапезников Ю.Ф.
RU2175990C1
СПОСОБ ПОЛУЧЕНИЯ ПЕНТАОКСИДА ВАНАДИЯ 2000
  • Кудрявский Ю.П.
  • Колесников В.А.
  • Трапезников Ю.Ф.
  • Шундиков Н.А.
  • Шаламов А.В.
  • Леханов В.Ф.
RU2172789C1
СПОСОБ КОМПЛЕКСНОЙ ПЕРЕРАБОТКИ И ОБЕЗВРЕЖИВАНИЯ ПОЛИМЕТАЛЛИЧЕСКИХ ОТХОДОВ ПРОИЗВОДСТВА 2001
  • Кудрявский Ю.П.
  • Трапезников Ю.Ф.
  • Казанцев В.П.
  • Анашкин В.С.
  • Беккер В.Ф.
  • Липунов И.Н.
  • Потеха С.И.
  • Рахимова О.В.
  • Бирюков Г.К.
  • Стрелков В.В.
RU2194782C1
US 4587109 A, 06.05.1986
US 3227515 А, 04.01.1966
Способ и приспособление для нагревания хлебопекарных камер 1923
  • Иссерлис И.Л.
SU2003A1
GB 1269639 А, 06.04.1972.

RU 2 574 916 C1

Авторы

Тетерин Валерий Владимирович

Рымкевич Дмитрий Анатольевич

Черезова Любовь Анатольевна

Бездоля Илья Николаевич

Даты

2016-02-10Публикация

2014-09-24Подача