Изобретение относится к измерительной технике и может быть использовано при измерении отклонений округлости сечений крупногабаритных тел вращения, главным образом сечений, например шпангоутов корпусов цилиндрических или конических вставок судов и подводных лодок.
Известен способ контроля формы и диаметров внутренних сечений крупногабаритных цилиндрических деталей по патенту РФ № 2166729, включающий установку внутрь обмеряемой детали измерительного устройства с плоскостью вращения перпендикулярной оси детали, вращение водила, в направляющих которого установлена с возможностью перемещения в радиальном направлении подпружиненная измерительная штанга, на конце которой имеется ролик, катящийся по поверхности проверяемой детали. При этом ось вращения водила устанавливается относительно оси детали приблизительно, с точностью до ±20% от диаметра, текущие значения радиуса детали и угла поворота водила через определенные промежутки передаются на электронное устройство (компьютер), которое накапливает результаты замеров, контролирует величину угла поворота водила, и при совершении водилом полного оборота численным интегрированием с использованием массива значений углов и радиусов контрольных точек определяют положение центра тяжести сечения детали, пересчитывают углы и радиусы контрольных точек детали относительно центра тяжести сечения детали, по пересчитанным значениям которых определяют геометрические характеристики сечения детали. Однако этот способ невозможно использовать в корпусных конструкциях с большим количеством элементов насыщения.
Известны способы измерения отклонений от круговой формы сечений корпусов подводных лодок с использованием радиусометрического и координатного принципов [1]. Радиусометрический способ заключается в измерении радиус-векторов точек внутренней поверхности оболочки. Измерения проводятся в плоскости контролируемого сечения (шпангоута) от заданного центра. Полученные в результате измерения данные пересчитываются к базе отсчета отклонений.
Используемый в настоящее время в судостроении указанный способ предусматривает:
- деление периметров измеряемых сечений (шпангоутов) оболочек на 16 или 48 частей;
- натяжение струны (металлической проволоки) между центрами торцов оболочки и фиксация, таким образом, ее центральной оси;
- измерение радиус-векторов размеченных на контуре точек от центральной оси длинномерным ручным инструментом (штихмасом или рулеткой с натяжным устройством).
Указанные измерения возможны только в случае, если внутри оболочки есть условия для использования крупногабаритного инструмента при отсутствии скрытых контрольных точек. Если же внутри оболочки уже установлены конструкции насыщения, то в их металлических стенках газовой резкой делают технологические вырезы (окна) для возможности прохода измерительного инструмента (штихмаса, рулетки) до точек разметки. В дальнейшем предусматривается заварка этих вырезов и проверка сварных швов гамма-дефектоскопией, что весьма трудоемко. Если вырезка окон не допускается, измерения радиус-векторов проводят не по всей совокупности контрольных точек. Такие измерения снижают качество контроля. После установки внутри оболочек полного комплекса крупногабаритного оборудования измерения указанным способом становятся невозможными.
Координатный способ измерений отклонений от круговой формы оболочек [1], принятый за прототип, основан на использовании современных лазерных средств 3D-измерения, среди которых наиболее востребованными являются тахеометр и трекер.
Применение лазерного тахеометра (трекера) предусматривает измерение дистанции до контрольной точки объекта (длины радиуса-вектора точки) лазерным дальномером и углов, образуемых проекциями радиуса-вектора с координатными осями встроенного электронного теодолита по горизонтальному и вертикальному лимбам. С целью обеспечения требуемой точности в контролируемых точках устанавливают специальные отражатели.
Измерение округлости всей оболочки невозможно произвести с одной установки без перебазирования координатного средства контроля. Поэтому предусматривается ряд стоянок тахеометра (трекера) в обход конструкций насыщения, загромождающих прямую видимость точек разметки. При этом результаты измерений с различных стоянок увязываются в единую корабельную систему координат с использованием предварительного создания внутри оболочки локальной геодезической сети с системой стационарных опорных элементов (отражателей).
Описанный координатный способ-прототип позволяет определить координаты точек разметки, скрытые от прямой видимости конструкциями насыщения, установленными в глубине внутренней полости оболочки, за счет их обхода при перебазировании средства измерения. Однако он не позволяет определить координаты точек разметки, скрытых стенками элементов насыщения, приваренных к внутренней поверхности обшивки оболочки (фундаментов, камер, цистерн и др.), которые невозможно обойти.
Задачей заявляемого изобретения является создание простого и надежного способа определения координат скрытых контрольных точек при измерении отклонений от круговой формы корпусных конструкций.
Технический результат, достигаемый в процессе решения поставленной задачи, заключается в повышении достоверности объема измерений округлости и снижении трудоемкости измерительного процесса.
Указанный технический результат достигается при измерении отклонений от круговой формы сечений корпусов цилиндрических вставок судов или подводных лодок, при котором размечают на внутренней поверхности обшивки корпуса контрольные точки в плоскости каждого контролируемого сечения, например, шпангоута и устанавливают на них отражатели, а внутри корпуса размещают измерительное устройство типа лазерного тахеометра или трекера таким образом, чтобы оси измерительного устройства совпадали с системой координат корпуса. Далее сканируют контрольные точки и координаты контрольных точек передают на компьютер, который накапливает результаты замеров, по значениям которых определяют геометрические характеристики контролируемого сечения, затем последовательно перебазируют измерительное устройство относительно координат корпуса для дальнейшего сканирования всего массива контрольных точек сечений.
Однако в отличие от прототипа перед установкой внутри корпуса элементов насыщения, закрывающих прямую видимость для лазерного луча некоторых контрольных точек, измеряют с помощью измерительного устройства расстояния от каждой закрываемой точки до ближайших к ней с одной или двух сторон двух открытых контрольных точек привязки, находящихся на общей разметке в плоскости контролируемого сечения, а также расстояние между ними. Результаты этих замеров используют затем при измерении отклонений от круговой формы сечений корпусов для определения координат скрытых контрольных точек по известной формуле треугольника, причем результат определения координат скрытой точки признается достоверным, если первичное и вторичное измеренные расстояния между точками привязки отличаются друг от друга не более чем на 0,1% от диаметра корпуса.
В частном случае все вычисления координат скрытых точек производят в среде графоаналитического программного обеспечения, т.е. по специальной программе.
Повышение точности и достоверности измерения отклонения от круговой формы корпусных конструкций обеспечивается охватом полного массива координат точек разметки без их пропусков и применением высокоточного лазерного инструмента (тахеометра, трекера) с погрешностью измерения не более ±0,3 мм.
Снижение трудоемкости процесса измерения достигается за счет отмены вскрытия в металлических стенках элементов насыщения проходных отверстий для лазерного луча с последующей их заваркой и проверкой гамма-дефектоскопией.
Заявляемый способ поясняется чертежом (фиг. 1), на котором показаны контуры сечений цилиндрической корпусной конструкции с разметкой контрольных точек и схемой их измерений, где номерами обозначены следующие позиции: (1÷16) - контрольные точки разметки, 7, 11 - скрытые контрольные точки, I - цилиндрическая корпусная конструкция, II - закрытый элемент насыщения (фундамент), III - след контролируемого сечения (шпангоута), IV - тахеометр (трекер).
Заявляемый способ осуществляется следующим образом на примере технологии процесса измерений отклонений круговой формы корпуса подводной лодки. В процессе изготовления корпусной конструкции цилиндрической вставки подводной лодки (цилиндрической обечайки прочного корпуса) по каждому контрольному сечению (шпангоуту) производится разметка равноудаленных контрольных точек, количество которых 16 для прочных корпусов подводных лодок. В соответствии с чертежом в каждом контрольном сечении по технологии предприятия-изготовителя отдельно отмечаются скрываемые элементами насыщения точки и ближайшие к каждой из них открытые точки, которые принимают за точки привязки. После встраивания изготовленной обечайки в корпус основного изделия (например, в корпус подводной лодки, находящийся на стапеле) перед установкой насыщения и сварочными работами, способными вызвать деформации обшивки и шпангоутов, с помощью тахеометра или трекера измеряют и протоколируют расстояния R1 и R2 от закрываемой точки до точек привязки, а также расстояние R3 между точками привязки.
После завершения плановых работ по установке внутри секции подводной лодки штатных элементов насыщения (выгородок, переборок, палуб, настилов и других конструктивных образований) перед гидравлическими испытаниями обязательно предусматриваются проверочные работы по определению отклонений сечений корпуса от круговой формы. Проверочные работы выполняются координатным способом с использованием в качестве измерительного инструмента тахеометра или трекера. Операторы измерительной бригады устанавливают отражатели поочередно в каждую размеченную контрольную точку на внутренней поверхности обечайки. Лазерный луч средства измерения визируется в режиме автоматического слежения на центр отражателя, и прибор определяет и записывает в базу данных трехмерные координаты соответствующей контрольной точки в системе координат прибора, включая зафиксированные точки привязки скрытых контрольных точек. При этом предусматривается перебазирование средства измерения с использованием ряда стоянок тахеометра (трекера) в обход конструкций насыщения, загромождающих прямую видимость точек разметки. Результаты измерений с различных стоянок увязываются в единую корабельную систему координат с использованием предварительного создания внутри оболочки локальной геодезической сети с системой стационарных опорных элементов (отражателей). По измеренным координатам точек привязки повторно определяется расстояние R3 между ними. Координаты соответствующей скрытой точки определяются как пересечение в плоскости шпангоута двух окружностей с радиусами R1 и R2 с центрами в точках привязки соответственно. При этом геометрические построения и вычисления производят или аналитически или в среде графоаналитического программного обеспечения персонального компьютера, причем результат определения координат скрытых точек признается достоверным, если первичное и вторичное измеренные расстояния между точками привязки отличаются не более чем на 0,1% от диаметра корпуса.
Источник информации
1. Гаврилюк Л.П. Обоснование выбора методики контроля отклонений от круговой формы корпусных конструкций. Судостроение. 2007. № 2. С. 55-58.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ИЗМЕРЕНИЯ ФОРМЫ КОРПУСОВ ПОДВОДНЫХ ЛОДОК | 2015 |
|
RU2617721C1 |
СПОСОБ ИЗМЕРЕНИЯ ФОРМЫ ПРОЧНОГО КОРПУСА ПОДВОДНОЙ ЛОДКИ, ЗАКРЫТОГО КОНСТРУКЦИЯМИ ЛЕГКОГО КОРПУСА | 2016 |
|
RU2622230C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ КООРДИНАТ ЦЕНТРА ОТВЕРСТИЯ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ | 2017 |
|
RU2667666C1 |
ШИРОКОДИАПАЗОННЫЙ КОМПАРАТОР ДЛЯ ПОВЕРКИ И КАЛИБРОВКИ КООРДИНАТНЫХ СРЕДСТВ ИЗМЕРЕНИЙ | 2009 |
|
RU2401985C1 |
Способ разметки деталей приварного насыщения на поверхности в помещении судна | 1990 |
|
SU1795282A1 |
ПОВЕРОЧНЫЙ КОМПЛЕКС КООРДИНАТНЫХ ПРИБОРОВ И ИЗМЕРИТЕЛЬНЫХ СИСТЕМ | 2012 |
|
RU2494346C1 |
Способ калибровки мобильных 3D-координатных средств измерений и устройство для его реализации | 2018 |
|
RU2710900C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ГЕОМЕТРИЧЕСКИХ ПАРАМЕТРОВ ИЗДЕЛИЙ И ЦЕЛЕВОЙ ЗНАК ДЛЯ ОПРЕДЕЛЕНИЯ ГЕОМЕТРИЧЕСКИХ ПАРАМЕТРОВ ИЗДЕЛИЙ | 2000 |
|
RU2202101C2 |
СПОСОБ ОПРЕДЕЛЕНИЯ ПОЛОЖЕНИЯ ОСЕЙ ОТВЕРСТИЙ НА ПОВЕРХНОСТИ ИЗМЕРЯЕМОГО ОБЪЕКТА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2019 |
|
RU2720183C1 |
Способ контроля положения оси прокатки непрерывного стана | 2015 |
|
RU2607887C1 |
Изобретение относится к измерительной технике и может быть использовано при измерении отклонений округлости сечений крупногабаритных тел вращения. Техническим результатом изобретения является повышение точности измерений округлости и снижение трудоемкости измерительного процесса. Указанный технический результат достигается при измерении отклонений от круговой формы сечений корпусов цилиндрических вставок судов или подводных лодок, при котором размечают на внутренней поверхности обшивки корпуса контрольные точки в плоскости каждого контролируемого сечения и устанавливают на них отражатели, а внутри корпуса размещают измерительное устройство типа лазерного тахеометра. Сканируют контрольные точки, координаты контрольных точек передают на компьютер, который накапливает результаты замеров, затем последовательно перебазируют измерительное устройство относительно координат корпуса для дальнейшего сканирования всего массива контрольных точек сечений. Повышение точности и достоверности измерения отклонения от круговой формы корпусных конструкций обеспечивается охватом полного массива координат точек разметки без их пропусков и применением высокоточного лазерного инструмента с погрешностью измерения не более ±0,3 мм. 1 з.п. ф-лы. 1 ил.
1. Способ определения координат скрытых контрольных точек при измерении отклонений от круговой формы сечений корпусов цилиндрических вставок судов или подводных лодок, при котором размечают на внутренней поверхности обшивки корпуса контрольные точки в плоскости каждого контролируемого сечения, например шпангоута, и устанавливают на них отражатели, внутри корпуса размещают измерительное устройство типа лазерного тахеометра или трекера таким образом, чтобы оси измерительного устройства совпадали с системой координат корпуса, сканируют контрольные точки и координаты контрольных точек передают на компьютер, который накапливает результаты замеров, по значениям которых определяют геометрические характеристики контролируемого сечения, затем последовательно перебазируют измерительное устройство относительно координат корпуса для дальнейшего сканирования всего массива контрольных точек сечений, отличающийся тем, что перед установкой внутри корпуса элементов насыщения, закрывающих прямую видимость для лазерного луча некоторых контрольных точек, измеряют с помощью измерительного устройства расстояния от каждой закрываемой точки до ближайших к ней с одной или двух сторон двух открытых контрольных точек привязки, находящихся на общей разметке в плоскости контролируемого сечения, а также расстояние между ними, результаты замеров которых используют затем при измерении отклонений от круговой формы сечений корпусов для определения координат скрытых контрольных точек по известной формуле треугольника, причем результат определения координат скрытой точки признается достоверным, если первичное и вторичное измеренные расстояния между точками привязки отличаются друг от друга не более чем на 0,1% от диаметра корпуса.
2. Способ определения координат скрытых контрольных точек при измерении отклонений от круговой формы сечений корпусов цилиндрических вставок судов или подводных лодок по п. 1, отличающийся тем, что все вычисления координат производят в среде графоаналитического программного обеспечения.
Гаврилюк Л.П | |||
Обоснование выбора методики контроля отклонений от круговой формы корпусных конструкций | |||
Судостроение | |||
Пресс для выдавливания из деревянных дисков заготовок для ниточных катушек | 1923 |
|
SU2007A1 |
СПОСОБ КОНТРОЛЯ ФОРМЫ И ДИАМЕТРОВ ВНУТРЕННИХ СЕЧЕНИЙ КРУПНОГАБАРИТНЫХ ЦИЛИНДРИЧЕСКИХ ДЕТАЛЕЙ | 2000 |
|
RU2166729C1 |
СПОСОБ ИЗМЕРЕНИЯ ГЕОМЕТРИЧЕСКОЙ ФОРМЫ ЦИЛИНДРИЧЕСКОЙ ПОВЕРХНОСТИ ТЕЛА ВРАЩЕНИЯ И ЕГО ПОВЕДЕНИЯ В ПРОЦЕССЕ ЭКСПЛУАТАЦИИ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ | 2002 |
|
RU2227268C2 |
US 6418629 B1, 16.07.2002. |
Авторы
Даты
2016-02-20—Публикация
2014-07-10—Подача