СПОСОБ ОБНАРУЖЕНИЯ ГИДРОАКУСТИЧЕСКИХ ВОЗДЕЙСТВИЙ Российский патент 2016 года по МПК H04R1/44 

Описание патента на изобретение RU2577791C1

Изобретение относится к области обнаружения гидроакустического шумоизлучения подводных и надводных объектов, прослушивания и регистрации гидроакустических воздействий в натурных водоемах в диапазоне частот и повышенной чувствительностью в инфразвуковой части в пределах от нуля до 5 Гц. Заявляемый способ обнаружения гидроакустических колебаний реализуется при использовании приемного модуля и основан на измерении его угловой скорости корпуса модуля до начала и в процессе шумоизлучения объектов.

Существует вид гидроакустических полей плавсредств - подводный шум, вызываемый работающими механизмами и движением плавсредств в водной среде. В области измерения гидроакустических сигналов известна потребность в возможности определять пространственное шумоизлучение надводных и подводных объектов, чтобы в дальнейшем использовать такую информацию в вычислительных программах по идентификации объектов и определению их пространственного положения.

Известен способ измерения уровня давления шумоизлучения движущегося объекта в натурном водоеме по патенту РФ №2108007, дата приоритета от 01.11.1994, заключающийся в размещении в заданной области водоема рабочего гидроакустического средства измерений, направлении контролируемого объекта с равномерной скоростью курсом к рабочему гидроакустическому средству и измерении эффективных значений напряжений на выходе рабочего средства измерений. Перед проведением измерений уровня шумоизлучения движущегося объекта на последнем устанавливают управляемый гидроакустический источник опорных сигналов с переменным уровнем излучения, а измерение эффективных значений напряжений на выходе рабочего гидроакустического средства проводят последовательно при выключенном и включенном источнике опорных сигналов. При этом при включенном источнике опорных сигналов измеряют уровень излучения последнего до момента удвоения эффективного значения напряжения на выходе рабочего средства, получаемого ранее при выключенном источнике опорных сигналов, и в момент удвоения эффективного значения напряжения на выходе рабочего средства измеряют уровень давления шумоизлучения движущегося объекта в натурном водоеме по значению уровня излучения источника опорных сигналов.

Недостатком данного способа является узкий рабочий диапазон измеряемых акустических воздействий от 5 Гц до 7-8 Гц.

Известен способ измерения параметров шумоизлучения объекта в натурном водоеме оптическими средствами, известный из заявки РФ №94006050 на изобретение с датой приоритета от 22.02.1994 г. Существо изобретения заключается в том, что в заданной области натурного водоема располагают сигнальную катушку волоконно-оптического интерференционного гидрофона, а в дополнительном водоеме располагают его опорную катушку. При этом в дополнительном водоеме формируют калиброванное гидроакустическое поле, с помощью которого непосредственно в процессе измерений периодически уточняют калибровочный коэффициент волоконно-оптического гидрофона.

Недостатком способа является узкий диапазон рабочих частот и большая сложность реализации.

Наиболее близким техническим решением к заявляемому изобретению является способ исследования первичных гидроакустических полей шумящего объекта по патенту РФ 2329474, дата приоритета от 21.06.2006, заключающийся в расположении гидроакустического приемного модуля в заданной области натурного водоема, направлении к приемному модулю исследуемого шумящего объекта и измерении приемным модулем параметров шумящего объекта при последующей обработке последних на компьютере. В качестве приемного модуля используют комбинированный гидроакустический приемник с разнесенными в пространстве на расстояние, не превышающее 0,2λ в пределах приемного модуля векторным приемником и приемником звукового давления, а в качестве измеряемого приемным модулем параметра - акустическую мощность шумящего объекта, измеряемую в плоскости, ориентированной вдоль траектории движения объекта, где λ - минимально регистрируемая длина звуковой волны в спектре шумоизлучения шумящего объекта.

Данное изобретение направлено на повышение информативности об исследуемых первичных гидроакустических полях шумящего объекта. Прослушивание гидроакустических воздействий в натурных водоемах в широком диапазоне частот при использовании данного способа невозможно.

Общей операцией в способах прослушивания и регистрации гидроакустических воздействий, рассматриваемых в качестве аналогов и прототипа, является измерение уровня звукового давления на приемный модуль, имеющий прямой контакт с внешней водной средой.

Отличительными признаками заявляемого способа является использование в качестве приемного модуля высокочувствительного датчика угловой скорости, измерение угловой скорости корпуса приемного модуля, обработка полученной информации в вычислительном модуле, определение параметров колебания водной среды по предлагаемому математическому выражению.

Технической задачей заявленного технического решения является расширение диапазона обнаружения гидроакустических воздействий, в частности, в области инфранизких частот в пределах от нуля до 5 Гц.

Технические результаты заключаются в повышении чувствительности к измерению низкочастотных акустических сигналов и повышении точности измерения акустических колебаний, что позволит определить и контролировать движение подводных объектов на шельфе на малых глубинах и в океане на повышенных дальностях.

Данные технические результаты достигаются за счет того, что при осуществлении способа обнаружения гидроакустических воздействий располагают гидроакустический приемный модуль гидрофона в натурном водоеме на якоре с поплавком. Выполняют измерения приемным модулем параметров шумящего объекта при последующей обработке таких параметров на компьютере. Исходной информацией для прослушивания и регистрации акустических воздействий является угловая скорость колебания корпуса приемного модуля гидрофона, вызванная этим воздействием.

В качестве приемного модуля гидрофона используют высокочувствительный датчик угловой скорости. Измеряют величину угловой скорости, полученную информацию обрабатывают в вычислительном блоке и на ее основе определяют величины, характеризующие измеряемое гидроакустическое воздействие по математическому выражению:

S = 0 t Ω ˙ ( t ) d t L ,

где t - время измерений;

L - радиус поворота датчика;

Ω ˙ - исходный сигнал волоконно-оптического гироскопа при измерении угловой скорости датчика;

S - линейное смещение.

В качестве датчика угловой скорости используется высокочувствительный волоконно-оптический гироскоп, имеющий повышенную длину волокна до 25 км, работающий в режиме измерения угловой скорости в заданном диапазоне частот от нуля до 5 Гц.

Способ обнаружения гидроакустических воздействий реализуется следующим образом.

Гидроакустический приемный модуль гидрофона располагают в натурном водоеме на якоре с поплавком. В качестве приемного модуля гидрофона используют высокочувствительный датчик угловой скорости. Приемный модуль гидроакустических сигналов выполнен в виде катушки оптоволокна, размещенной в корпусе датчика угловой скорости. Далее измеряют величину угловой скорости приемного модуля, полученную информацию обрабатывают в вычислительном блоке и на ее основе определяют величины, характеризующие измеряемое гидроакустическое воздействие по математическому выражению: S = 0 t Ω ˙ ( t ) d t L

На фигуре 1 представлена схема расположения приемного модуля гидрофона в положении равновесия и при смещении.

На фигуре 2 представлена спектрограмма акустических шумов Белого моря, полученная при применении гидрофона ВОГФ-1.

Движение корпуса приемного модуля может быть представлено как движение материальной точки с массой m под действием упругой силы F=-kx, пропорциональной смещению с коэффициентом упругости k и имеющей противоположный знак. Полагая, что в начальный момент времени смещение точки х0=1 и начальная скорость V0=0, закон движения этой точки представляется в виде x=cosωt, где ω = k m , мгновенная скорость - V=-ωsinωt.

В общем случае материальная точка движется по закону:

S=Acos(ωt+φ),

где S - смещение, т.е. текущее расстояние от колеблющейся точки до положения равновесия;

А - амплитуда смещения, т.е. максимальное смещение точки от положения равновесия;

(ωt+φ) - фаза колебания;

φ - начальная фаза.

Именно такая зависимость является характеристикой колебания водной среды. Текущее значение скорости смещения точки представляется в виде V=-Aωsin(ωt+φ).

Вариант размещения приемного модуля гидрофона с гибкой подвеской на якоре с постоянной длиной каната L и поплавком для поддержания гидрофона в вертикальном положении представлен на фиг. 1.

Под действием упругой силы материальная точка со скоростью V смещается на расстояние S, что фиксируется гидрофоном как колебание водной среды, т.е. акустический сигнал.

На фиг. 1 показано, что при постоянной величине L действие упругой силы будет вызывать угловое перемещение корпуса приемного модуля вместе с его чувствительным элементом-датчиком угловой скорости, в котором частота и амплитуда измеряемых сигналов Ω ˙ соответствует воздействию на корпус прибора возмущений по угловой скорости от колебаний внешней среды:

Ω=-Aωsin(ωt+φ), что соответствует текущему углу разворота на угол Ω=A1cos(ωt+φ) или в переводе на линейные смещения S=A1Lcos(ωt+φ).

Подобранные расчетным и подтвержденные опытным путем соотношения величины амплитуд A и A1 позволяют проводить обработку информации, полученную с датчиков угловой скорости, по алгоритмам, аналогичным имеющимся алгоритмам для традиционных способов, где измеряемой физической величиной является акустическое давление.

Волоконно-оптический гироскоп (ВОГФ-1) - это прибор, который предназначен для измерения угловой скорости и используется большей частью в инерциальных измерительных системах. В состав волоконно-оптического гироскопа входит лазер, оптическое волокно на катушке и фотоприемник. С помощью лазера в оптическое волокно вводят два встречных луча, которые после прохождения по катушке фиксируются фотоприемником. При вращении катушки вокруг оси угловая скорость этого вращения фиксируется через разность фаз встречных лучей на выходе из катушки.

Экспериментальное подтверждение эффективности заявленного способа измерения и регистрации гидроакустических воздействий получено в сентябре 2014 года на Государственном центральном морском полигоне, где проведены по согласованной программе ОАО «НПО автоматики» и в/ч 09703 с выпуском отчета натурные испытания разработанного ОАО «НПО автоматики» гидрофона ВОГФ-1, в котором реализован заявляемый способ измерения и регистрации гидроакустических воздействий на основе измерения угловой скорости корпуса приемного модуля. В частности, на фиг. 2 приведены полученные на этих испытаниях результаты измерений естественного фонового шума Белого моря в диапазоне частот от 0 до 2000 Гц.

Из спектрограммы следует, что регистрируемый сигнал в полосе частот от нуля до 1 Гц (инфразвук Белого моря) превышает сигнал в полосе частот около 100 Гц практически на 50 дБ, чем подтверждается высокая чувствительность заявленного способа измерения и регистрации гидроакустических воздействий в полосе инфранизких частот 0÷5 Гц.

Таким образом, выполнение гидроакустического приемного модуля гидрофона на якоре с поплавком, расположение его в натурном водоеме, использование высокочувствительного датчика угловой скорости в качестве приемного модуля гидрофона, измерение величины угловой скорости, обработка полученной информации в вычислительном блоке и определение величины, характеризующей измеряемое гидроакустическое воздействие по математическому выражению S = 0 t Ω ˙ ( t ) d t L , позволяет повысить чувствительность к измерению низкочастотных акустических сигналов и повысить точность измерения акустических колебаний, тем самым расширить диапазон обнаружения гидроакустических воздействий, в частности, в области инфранизких частот в пределах от нуля до 5 Гц. Использование высокочувствительного волоконно-оптического гироскопа, имеющего повышенную длину волокна до 25 км, в качестве датчика угловой скорости также позволяет расширить диапазон измеряемых акустических воздействий в натурных водоемах в инфразвуковой части.

Похожие патенты RU2577791C1

название год авторы номер документа
СПОСОБ ОБНАРУЖЕНИЯ ГИДРОДИНАМИЧЕСКИХ ВОЗДЕЙСТВИЙ 2015
  • Шалимов Леонид Николаевич
  • Дерюгин Сергей Федорович
  • Манько Николай Григорьевич
  • Штыков Александр Николаевич
  • Шестаков Геннадий Васильевич
  • Штыков Григорий Александрович
  • Шонохова Анастасия Андреевна
  • Мужиков Александр Евгеньевич
  • Чистякова Евгения Константиновна
RU2587685C1
СИСТЕМА ОБНАРУЖЕНИЯ И РЕГИСТРАЦИИ ГИДРОАКУСТИЧЕСКИХ И ГИДРОДИНАМИЧЕСКИХ ВОЗДЕЙСТВИЙ 2015
  • Шалимов Леонид Николаевич
  • Дерюгин Сергей Федорович
  • Манько Николай Григорьевич
  • Штыков Александр Николаевич
  • Шестаков Геннадий Васильевич
  • Штыков Григорий Александрович
  • Шонохова Анастасия Андреевна
  • Мужиков Александр Евгеньевич
  • Чистякова Евгения Константиновна
RU2587523C1
СПОСОБ ИССЛЕДОВАНИЯ ПЕРВИЧНЫХ ГИДРОАКУСТИЧЕСКИХ ПОЛЕЙ ШУМЯЩЕГО ОБЪЕКТА 2006
  • Некрасов Виталий Николаевич
  • Наседкин Александр Владимирович
  • Гордиенко Валерий Александрович
  • Краснописцев Николай Вячеславович
RU2329474C2
Способ определения координат, диаграмм направленности и акустической мощности зон излучения на корпусе движущегося шумящего объекта 2022
  • Некрасов Виталий Николаевич
  • Лосев Герман Игоревич
RU2799388C1
Способ исследования структуры первичных гидроакустических полей шумящего объекта 2022
  • Некрасов Виталий Николаевич
  • Лосев Герман Игоревич
  • Краснописцев Николай Вячеславович
  • Исаков Вячеслав Викторович
RU2787312C1
СПОСОБ ИЗМЕРЕНИЯ УРОВНЕЙ И ГОРИЗОНТАЛЬНОЙ НАПРАВЛЕННОСТИ ШУМОВ МОРСКОГО НЕФТЕГАЗОВОГО КОМПЛЕКСА 2011
  • Астахова Нина Владимировна
  • Добрянский Виктор Михайлович
  • Колигаев Олег Анатольевич
  • Крайнов Александр Борисович
  • Лобов Ростислав Викторович
RU2480781C2
Носитель аппаратуры измерительного гидроакустического комплекса 2016
  • Цыганков Сергей Григорьевич
  • Ильин Сергей Аркадьевич
RU2639846C1
СПОСОБ ИЗМЕРЕНИЯ УРОВНЯ ДАВЛЕНИЯ ШУМОИЗЛУЧЕНИЯ ДВИЖУЩЕГОСЯ ОБЪЕКТА В НАТУРНОМ ВОДОЕМЕ 1994
  • Аббясов З.
  • Власов Ю.Н.
  • Маслов В.К.
  • Сильвестров С.В.
  • Толстоухов Д.А.
RU2108007C1
ШУМОПЕЛЕНГАТОР 1995
  • Власов Ю.Н.
  • Маслов В.К.
  • Сильвестров С.В.
  • Толстоухов А.Д.
  • Трохан А.М.
RU2106651C1
СПОСОБ ОПРЕДЕЛЕНИЯ УРОВНЕЙ ДАВЛЕНИЯ И ПРОСТРАНСТВЕННОГО РАСПОЛОЖЕНИЯ ИСТОЧНИКОВ ШУМОИЗЛУЧЕНИЯ ДВИЖУЩЕГОСЯ ОБЪЕКТА 1993
  • Власов Ю.Н.
  • Аббясов З.
  • Маслов В.К.
  • Толстоухов А.Д.
RU2092802C1

Иллюстрации к изобретению RU 2 577 791 C1

Реферат патента 2016 года СПОСОБ ОБНАРУЖЕНИЯ ГИДРОАКУСТИЧЕСКИХ ВОЗДЕЙСТВИЙ

Изобретение относится к области метрологии, а именно к методам обнаружения гидроакустических шумоизлучений. Способ обнаружения гидроакустических воздействий заключается в расположении гидроакустического приемного модуля гидрофона в натурном водоеме на якоре с поплавком, измерении приемным модулем параметров шумящего объекта при последующей обработке таких параметров на компьютере. В качестве приемного модуля гидрофона используют высокочувствительный датчик угловой скорости. Выполняют измерение величины угловой скорости, полученную информацию обрабатывают в вычислительном блоке и на ее основе определяют величины, характеризующие измеряемое гидроакустическое воздействие по математическому выражению:

где t - время измерений; L - радиус поворота датчика; Ω ˙ - исходный сигнал волоконно-оптического гироскопа при измерении угловой скорости датчика; S - линейное смещение. Приемный модуль гидрофона может быть снабжен гибкой подвеской с якорем и постоянной длиной каната. Длина волокна гироскопа гидрофона - до 25 км. Технический результат - расширение диапазона обнаружения гидроакустических воздействий в низкочастотной области. 1 з.п. ф-лы, 2 ил.

Формула изобретения RU 2 577 791 C1

1. Способ обнаружения гидроакустических воздействий, заключающийся в расположении гидроакустического приемного модуля гидрофона в натурном водоеме на якоре с поплавком, измерении приемным модулем параметров шумящего объекта при последующей обработке таких параметров на компьютере, отличающийся тем, что в качестве приемного модуля гидрофона используют высокочувствительный датчик угловой скорости, измеряют величину угловой скорости, полученную информацию обрабатывают в вычислительном блоке и на ее основе определяют величины, характеризующие измеряемое гидроакустическое воздействие по математическому выражению:

где t - время измерений;
L - радиус поворота датчика;
Ω ˙ - исходный сигнал волоконно-оптического гироскопа при измерении угловой скорости датчика;
S - линейное смещение.

2. Способ обнаружения гидроакустических воздействий по п. 1, отличающийся тем, что в качестве датчика угловой скорости используют высокочувствительный волоконно-оптический гироскоп, имеющий повышенную длину волокна до 25 км.

Документы, цитированные в отчете о поиске Патент 2016 года RU2577791C1

СПОСОБ ИССЛЕДОВАНИЯ ПЕРВИЧНЫХ ГИДРОАКУСТИЧЕСКИХ ПОЛЕЙ ШУМЯЩЕГО ОБЪЕКТА 2006
  • Некрасов Виталий Николаевич
  • Наседкин Александр Владимирович
  • Гордиенко Валерий Александрович
  • Краснописцев Николай Вячеславович
RU2329474C2
US 6529444 B2, 04.03.2003
US 4799752 A1, 24.01.1989
УПРУГОЕ УСТРОЙСТВО И СПОСОБ ЗАДАНИЯ ЕГО ХАРАКТЕРИСТИКИ 2011
  • Дергачев Эдуард Петрович
  • Дергачев Эдуард Эдуардович
RU2500937C2
US 2002141681 A1, 03.10.2002
JP 2007205940 A, 18.06.2007
ГЕОГИДРОФОН 2003
  • Власов Ю.Н.
  • Маслов В.К.
  • Цыганков С.Г.
RU2231088C1

RU 2 577 791 C1

Авторы

Шалимов Леонид Николаевич

Дерюгин Сергей Федорович

Манько Николай Григорьевич

Штыков Александр Николаевич

Шестаков Геннадий Васильевич

Штыков Григорий Александрович

Шонохова Анастасия Андреевна

Мужиков Александр Евгеньевич

Чистякова Евгения Константиновна

Даты

2016-03-20Публикация

2014-11-26Подача