СПОСОБ ИССЛЕДОВАНИЯ ПЕРВИЧНЫХ ГИДРОАКУСТИЧЕСКИХ ПОЛЕЙ ШУМЯЩЕГО ОБЪЕКТА Российский патент 2008 года по МПК G01H3/00 

Описание патента на изобретение RU2329474C2

Изобретение относится к области гидроакустики и может быть использовано для исследования параметров первичных гидроакустических полей надводных и подводных плавсредств.

Известны способы исследования первичных гидроакустических полей надводных и подводных шумящих объектов, заключающиеся в расположении гидроакустического приемного модуля (ПМ) в заданной области натурного водоема, направлении к ПМ исследуемого шумящего объекта и измерении ПМ параметров шумящего объекта при последующей обработке последних на компьютере [Патенты РФ №2010456, №2063106, №2108007, №2141739, №2141740, кл. H04R 1/44].

Любой из известных способов может быть принят за прототип.

В прототипе в качестве ПМ используют приемник звукового давления (гидрофон), а в качестве измеряемого ПМ параметра шумящего объекта - уровень звукового давления.

Недостатком прототипа является невысокая информативность проводимых исследований, вызванная низким соотношением сигнал/шум на выходе ПМ.

Техническим результатом, получаемым от внедрения изобретения, является повышение информативности об исследуемых первичных гидроакустических полях шумящего объекта.

Данный технический результат достигается за счет того, что в известном способе исследования первичных гидроакустических полей шумящего объекта, заключающемся в расположении гидроакустического ПМ в заданной области натурного водоема, направлении к ПМ исследуемого шумящего объекта и измерении ПМ параметров шумящего объекта при последующей обработке последних на компьютере, в качестве ПМ используют комбинированный гидроакустический приемник с разнесенными в пространстве на расстояние, не превышающее 0,2λ в пределах ПМ векторным приемником и приемником звукового давления, а в качестве измеряемого ПМ параметра - акустическую мощность шумящего объекта, измеряемую в плоскости, ориентированной вдоль траектории движения объекта, где λ - минимально регистрируемая длина звуковой волны в спектре шумоизлучения исследуемого шумящего объекта.

Сущность способа заключается в том, что с точки зрения получения исходных данных для описания процессов распространения звуковой волны, измерения акустического давления Р и колебательной скорости V равнозначны. С практической точки зрения возможность измерения в точке значений колебательной скорости (векторной величины) и звукового давления (скалярной величины) избавляют от необходимости построения пространственно развитых систем измерения акустического давления с последующим вычислением его производных.

Измеряемой величиной по общепринятому определению является математическое ожидание максимума квадрата звукового давления, измеренное на прямой, отстоящей от корпуса корабля на дистанции 50 м в однородной, безграничной, обесшумленной среде в третьоктавных полосах частот. В указанных условиях квадрат звукового давления выражает акустическую мощность источника на приведенном расстоянии. Но, говоря об измерении в точке, а не по всей поверхности волнового фронта, следует говорить об акустической мощности через элемент поверхности или равнозначно о плотности потока звуковой энергии (интенсивности звука).

В условиях измерений, приведенных в определении, для дальнего поля можно записать

где ρ - плотность воды;

с - скорость звука.

И тогда поток W звуковой энергии, определяемый через усредненное по времени произведение совпадающих по фазе компонентов мгновенного акустического давления и объемной колебательной скорости, будет равен

где τ - время измерения, равное или кратное периоду колебаний;

t - время.

В общем случае при реальных условиях измерений в результате взаимодействия волновых полей многих источников и их переотражения от границ среды волновода акустическая мощность носит комплексный характер. Действительная часть, собственно поток звуковой энергии в направлении г, определяется:

где Pэ - эффективное значение акустического давления;

Vэr - эффективное значение проекции вектора колебательной скорости на направление r;

ϕPV - разность фаз между акустическим давлением и колебательной скоростью.

Формула (3) в комплексном виде запишется:

Мнимая, реактивная плотность потока звуковой энергии, сосредоточенная в некотором объеме среды:

где Рэ - эффективное значение акустического давления;

Vэr - эффективное значение проекции вектора колебательной скорости на направление r;

ϕPV - разность фаз между акустическим давлением и колебательной скоростью.

Формула (5) в комплексном виде запишется:

Измеряемыми физическими величинами являются акустическое давление и колебательное ускорение частиц среды в точке расположения ПМ.

Способ реализуется по схеме, представленной на чертеже.

Шумящий объект 1 движется в плоскости, ортогональной плоскости чертежа. Шумоизлучение 2 объекта 1 принимается ПМ 3, состоящим из гидрофона 4 и векторного приемника 5, расположенные на расстоянии a≤0,2λ. Информация с выхода ПМ 3 направляется по кабелю 6 на обрабатывающую аппаратуру 7.

При реализации способа задача работы алгоритма - выделение действительной части потока звуковой энергии с заданного направления.

Для этого:

- плоскость измерений ориентируется в пространстве, направляя ось x на траверз, у вдоль траектории;

- сигналы акустического давления, ортогональных составляющих колебательной скорости, представляются в комплексном виде в частотной области, выполнением операции быстрого преобразования Фурье (БПФ);

- вычисляется по приведенной формуле (4) проекция действительной части потока звуковой энергии на оси системы координат, связанной с векторным приемником;

- в горизонтальной плоскости измерений, направленной на траверз прохода объекта измерительной системы, вычисляются значение модуля потока звуковой энергии

и направление прихода звуковой волны

где WRx, WRy - проекции потоков звуковой энергии на оси X, Y соответственно;

- по вычисленным значениям производится построение гистограммы распределения потока по направлению в третьоктавной полосе частот. По каждому направлению накапливаются значения потока в узкой полосе частот в приделах частотного диапазона рассматриваемого третьоктавного фильтра. Таким образом, на каждый отсчет времени измерений формируется угловое распределение потока в полосе частот третьоктавного фильтра;

- гистограммы сводятся в диаграмму время-углового распределения потока в полосе частот третьоктавного фильтра;

- задавая диапазон азимутальных, телесных углов, определяют на каждый отсчет времени направление и величину сектора, в пределах которого осуществляется суммирование значений действительной части потока;

- строятся проходные характеристики, определяется их максимальное значение, приписываемое результату измерений.

Как следует из представленного выше алгоритма, объектом генерируется акустическое поле, процесс распространения которого сопровождается переносом энергии и характеризуется вектором потока звуковой энергии.

Задача алгоритма сводится к измерению действительной часть вектора потока звуковой энергии (акустической мощности), формируемой объектом, местоположение которого определено телесным ϑ и азимутальным ϕ углами в системе координат векторного приемника в каждый момент времени измерений.

В результате работы технических средств проведения измерений (ПМ 3 в виде комбинированного гидроакустического приемника и аппаратуры 7 в виде тракта усиления-передачи и АЦП) формируются фалы с оцифрованными электрическими сигналами канала давления P(ti) и ортогональных составляющих колебательного ускорения представляющие синхронные отсчеты соответствующих величин на момент измерения ti.

Выполняя операцию интегрирования отсчетов ортогональных составляющих колебательного ускорения, получаем значения колебательной скорости

Временные отсчеты сигналов акустического давления, ортогональных составляющих колебательной скорости, переносятся в частотную область выполнением операции умножения на множитель ехр(j2πfciΔt), где fc - центральная частота анализируемого диапазона, Δt - временной интервал дискретизации. Таким образом, выполняется операция БПФ, в результате которой получаем соотношения в спектральной области, определяемые как:

где Р(t), V(t) - текущие отсчеты акустического давления, колебательной скорости соответственно;

f - частота спектральной составляющей.

Результатом перемножения на комплексную экспоненту является комплексный спектр.

В результате получены комплексные спектры ортогональных составляющих колебательной скорости, акустического давления. По их значениям вычисляем проекции действительной WRx, WRy, WRz и мнимой WIx, WIy, WIz составляющих потока звуковой энергии на оси трехмерной системы координат, образованной направлениями векторного приемника. Действительные части определяются в соответствии с выражением:

Мнимые как

Возможно получение отсчетов Wx,,Δf, Wy,,Δf, Wz,Δf, применяя фильтрацию временных отсчетов сигналов акустического давления и колебательной скорости полосовыми 1/3 октавными фильтрами. Полученные временные проходные в полосах частот третьоктавных фильтров подвергаются БПФ и полученные комплексные спектры перемножаются в соответствии с приведенными выражениями, давая спектры действительной и мнимой частей проекций потока звуковой энергии в третьоктавных полосах частот.

Для построения углового распределения вектора потока акустической мощности в тонкой полосе частот, входящей в диапазон рассматриваемого третьоктавного фильтра, рассчитываются параметры результирующего вектора потока звуковой энергии на каждый момент времени измерений.

Модуль вектора потока звуковой энергии вычисляется как

Направление вектора определяется углом ϕ, отсчитываемым от оси Х системы координат, связанной с векторным приемником, по формуле:

Полученные значения Iϕf и ϕ являются входными данными при построении гистограммы распределения отсчетов модуля вектора потока звуковой энергии от отсчета азимутального угла в диапазоне частот заданного третьоктавного фильтра. Значение модуля в тонкой полосе частот откладывается в точке, соответствующей направлению прихода. Операция повторяется для каждого «тонкого» отсчета модуля вектора потока в пределах полосы частот третьоктавного фильтра. Т.о. производится накопление значение потока звуковой энергии в третьоктавной полосе в зависимости от направления на каждый временной отсчет измерений.

Полученные гистограммы сводятся в диаграмму время-углового распределения потока звуковой энергии Iϕ,Δf по направлению в полосе частот выбранного третьоктавного фильтра.

Операция получения такого распределения выполняется для каждого третьоктавного фильтра в пределах частотного диапазона измерений.

Для осуществления пространственной фильтрации из массива значений Iϕ,Δf потока звуковой энергии в третьоктавных полосах частот, распределенных по направлению прихода, на каждый отсчет времени выбираются и суммируются значения с направлений, определяемых диапазоном, заданным оператором, и соответствующих угловой траектории движения объекта относительно приемной системы. Для ограничения по вертикальному направлению прихода потока звуковой энергии в результате суммируются значения, для которых выполняется условие

где ϑ - величина полярного угла, заданная оператором с расчетом перекрытия углового протяжения объекта по вертикали.

В результате выполнения приведенных операций за результат измерений принимается максимальный уровень действительной части акустической мощности в третьоктавных полосах частот, зафиксированной с угловых направлений, определяемых траекторией движения объекта во время измерительного галса.

При геометрии эксперимента, когда приемник и источник находятся на разной глубине и разнесены по горизонтальному расстоянию, не исключены случаи галсирования объекта вне горизонтальной плоскости измерений XY, формируемой векторным приемником. Горизонтальная плоскость измерений XY ориентируется по азимутальному углу α, полярному углу θ на траверз прохода объектом измерительной системы. При этом проекции вектора потока на оси пересчитываются в соответствии с выражением:

Точность, результат работы алгоритма определяются его возможностью определить направление вектора потока акустической мощности, который постоянно флуктуирует в пространстве. Дисперсия направления вектора определяется соотношением сигнал/помеха в выбранной полосе частот. Предполагаем, что для «тонких» частотных полос, в которых производится вычисление потока акустической мощности, отношение сигнал/помеха достаточно для определения направления потока. И превалирующее влияние на формирование вектора потока оказывает единственный источник.

Последовательность действий оператора при работе с программным обеспечением (ПО), реализующим алгоритм пространственной фильтрации, будет следующий.

Воспользовавшись результатами сонографического анализа, выделяется дискретная составляющая, однозначно связанная с объектом. Время-угловое распределение потока звуковой энергии в частотной полосе третьоктавного фильтра, содержащего частоту дискретной составляющей, характеризует угловую траекторию движения объекта относительно приемной системы. По максимуму уровня определяются время траверза tmp и горизонтальное направление α на точку траверза, отсчитываемое от оси Х измерительной системы координат.

На время траверза производят отчет полярного угла ϑ прихода потока звуковой энергии. Таким образом, определяются угловые направления плоскости измерений: азимутального угла α поворота оси Х относительно исходного положения и телесного угла θ=ϑ подъема измерительной плоскости XY, сохраняемые на все время эксперимента при условии постоянства элементов траектории движения объекта в системе координат векторного приемника.

На диаграмме время-углового распределения потока звуковой энергии в измерительной плоскости ХαθYαθ оператором задается диапазон угловых направлений, в пределах которого производится суммирование модуля действительной части акустической мощности на каждый отсчет времени усреднения. Ограничение в направлении прихода потока в вертикальной плоскости задается указанием размера углового сектора разрешенных направлений. Операция суммирования потока с ограниченных угловых направлений, соответствующих местоположению объекта, производится для третьоктавных полос во всем диапазоне измерений. Для полученных таким образом проходных характеристик акустической мощности производится выделение максимального значения и построение спектра максимума, объявляемого результатом измерений.

Таким образом, в данном способе в отличие от прототипа ПМ измеряется акустическая мощность шумоизлучения объекта, а не уровень звукового давления, что позволяет значительно увеличить соотношение сигнал/шум в измеряемом сигнале.

Похожие патенты RU2329474C2

название год авторы номер документа
Способ определения координат, диаграмм направленности и акустической мощности зон излучения на корпусе движущегося шумящего объекта 2022
  • Некрасов Виталий Николаевич
  • Лосев Герман Игоревич
RU2799388C1
Способ исследования структуры первичных гидроакустических полей шумящего объекта 2022
  • Некрасов Виталий Николаевич
  • Лосев Герман Игоревич
  • Краснописцев Николай Вячеславович
  • Исаков Вячеслав Викторович
RU2787312C1
СПОСОБ ОБНАРУЖЕНИЯ ГИДРОАКУСТИЧЕСКИХ ВОЗДЕЙСТВИЙ 2014
  • Шалимов Леонид Николаевич
  • Дерюгин Сергей Федорович
  • Манько Николай Григорьевич
  • Штыков Александр Николаевич
  • Шестаков Геннадий Васильевич
  • Штыков Григорий Александрович
  • Шонохова Анастасия Андреевна
  • Мужиков Александр Евгеньевич
  • Чистякова Евгения Константиновна
RU2577791C1
Способ классификации, определения координат и параметров движения шумящего в море объекта в инфразвуковом диапазоне частот 2019
  • Касаткин Борис Анатольевич
  • Касаткин Сергей Борисович
RU2718144C1
Пеленгатор низкочастотных шумовых сигналов для мобильных систем обнаружения малошумных подводных объектов 2023
  • Матвиенко Юрий Викторович
  • Хворостов Юрий Анатольевич
  • Глущенко Михаил Юрьевич
RU2811513C1
Способ обнаружения подводного источника широкополосного шума 2019
  • Матвиенко Юрий Викторович
  • Хворостов Юрий Анатольевич
  • Каморный Александр Валерьевич
RU2699923C1
Способ обнаружения подводного источника широкополосного шума 2019
  • Матвиенко Юрий Викторович
  • Хворостов Юрий Анатольевич
  • Каморный Александр Валерьевич
RU2715431C1
СПОСОБ ИЗМЕРЕНИЯ УРОВНЕЙ И ГОРИЗОНТАЛЬНОЙ НАПРАВЛЕННОСТИ ШУМОВ МОРСКОГО НЕФТЕГАЗОВОГО КОМПЛЕКСА 2011
  • Астахова Нина Владимировна
  • Добрянский Виктор Михайлович
  • Колигаев Олег Анатольевич
  • Крайнов Александр Борисович
  • Лобов Ростислав Викторович
RU2480781C2
Способ обнаружения подводного источника широкополосного шума 2022
  • Переселков Сергей Алексеевич
  • Кузькин Венедикт Михайлович
  • Матвиенко Юрий Викторович
  • Казначеев Илья Викторович
  • Ткаченко Сергей Александрович
  • Казначеева Елена Сергеевна
RU2787951C1
Способ обнаружения шумящих в море объектов 2018
  • Каришнев Николай Сергеевич
  • Ермоленко Александр Степанович
  • Подгайский Юрий Павлович
  • Алексеев Николай Семенович
RU2694782C1

Реферат патента 2008 года СПОСОБ ИССЛЕДОВАНИЯ ПЕРВИЧНЫХ ГИДРОАКУСТИЧЕСКИХ ПОЛЕЙ ШУМЯЩЕГО ОБЪЕКТА

Изобретение относится к области гидроакустики и может быть использовано для исследований параметров первичных гидроакустических полей надводных и подводных плавсредств. Техническим результатом изобретения является повышение информативности об исследуемых первичных гидроакустических полях первичного объекта. Способ заключается в расположении гидроакустического приемного модуля в заданной области натурного водоема, направлении к приемному модулю исследуемого шумящего объекта и измерении приемным модулем параметров шумящего объекта при последующей обработке последних на компьютере. При этом в качестве приемного модуля используют комбинированный гидроакустический приемник с разнесенными в пространстве в пределах приемного модуля векторным приемником и приемником звукового давления на расстояние, не превышающее 0,2λ, где λ - минимально регистрируемая длина звуковой волны в спектре шумоизлучения шумящего объекта. В качестве измеряемого приемным модулем параметра используют акустическую мощность шумящего объекта, измеряемую в плоскости, ориентированной вдоль траектории движения объекта. 1 ил.

Формула изобретения RU 2 329 474 C2

Способ исследования первичных гидроакустических полей шумящего объекта, заключающийся в расположении гидроакустического приемного модуля в заданной области натурного водоема, направлении к приемному модулю исследуемого шумящего объекта и измерении приемным модулем параметров шумящего объекта при последующей обработке последних на компьютере, отличающийся тем, что в качестве приемного модуля используют комбинированный гидроакустический приемник с разнесенными в пространстве на расстояние, не превышающее 0,2λ в пределах приемного модуля векторным приемником и приемником звукового давления, а в качестве измеряемого приемным модулем параметра - акустическую мощность шумящего объекта, измеряемую в плоскости, ориентированной вдоль траектории движения объекта, где λ - минимально регистрируемая длина звуковой волны в спектре шумоизлучения шумящего объекта.

Документы, цитированные в отчете о поиске Патент 2008 года RU2329474C2

СПОСОБ ИЗМЕРЕНИЯ УРОВНЯ ДАВЛЕНИЯ ШУМОИЗЛУЧЕНИЯ ДВИЖУЩЕГОСЯ ОБЪЕКТА В НАТУРНОМ ВОДОЕМЕ 1994
  • Аббясов З.
  • Власов Ю.Н.
  • Маслов В.К.
  • Сильвестров С.В.
  • Толстоухов Д.А.
RU2108007C1
Устройство для измерения параметров источников шума 1981
  • Гордиенко Елена Львовна
  • Захаров Лев Николаевич
  • Ильин Сергей Аркадьевич
  • Ильичев Виктор Иванович
  • Слуцков Александр Александрович
  • Топоровский Феликс Авраамович
  • Пенкин Юрий Васильевич
  • Щуров Владимир Александрович
SU953468A1
СПОСОБ ИЗМЕРЕНИЯ ПАРАМЕТРОВ ШУМНОСТИ ПЛАВСРЕДСТВА С ПОМОЩЬЮ ЛАЗЕРНОГО ГИДРОФОНА 1999
  • Аграновский А.В.
  • Власов Ю.Н.
  • Сборщиков В.А.
  • Цыганков С.Г.
RU2167500C1
СПОСОБ И УСТРОЙСТВО НАПРАВЛЕННОГО ПАРАМЕТРИЧЕСКОГО ПРИЕМА СЛАБЫХ СИГНАЛОВ В СРЕДАХ 2001
  • Виленчик Л.С.
  • Иванов Ю.В.
  • Трофимов В.П.
  • Корольков Г.Н.
RU2219561C2
РУПОРНАЯ АНТЕННА 2001
  • Семейкин Н.П.
  • Помозов В.В.
  • Титов А.Н.
  • Титов А.А.
RU2220483C2

RU 2 329 474 C2

Авторы

Некрасов Виталий Николаевич

Наседкин Александр Владимирович

Гордиенко Валерий Александрович

Краснописцев Николай Вячеславович

Даты

2008-07-20Публикация

2006-06-21Подача