ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ
Настоящее изобретение относится к технической области извлечения благородных металлов из отработанного катализатора, в частности к способу извлечения рутения из отработанного катализатора в виде оксида алюминия, нагруженного рутением.
УРОВЕНЬ ТЕХНИКИ
Рутений представляет собой очень дорогой редкий металл, имеет превосходные каталитические рабочие характеристики, имеет широкое применение в промышленности катализаторов и используется в основном при синтезе аммиака, при получении циклогексана посредством селективного гидрирования бензола и при производстве топливных элементов. Годовая добыча рутения в мире представляет собой всего лишь несколько дюжин тонн; при этом годовая добыча рутения в Китае составляет только несколько килограмм, что составляет меньше чем 1% от общей потребности. Следовательно, большая часть рутения, используемая для производства катализаторов в Китае, зависит от импорта, что приводит к высокой стоимости рутениевого катализатора. В дополнение к этому, чистота рутения в природных минералах в Китае составляет только 0,028 г/тонн; в то время как чистота рутения в катализаторе, как правило, не меньше чем 500 г/тонн, что гораздо выше, чем чистота рутения в природных минералах. Также композиция отработанного катализатора гораздо проще, чем у природных минералов. Само по себе извлечение рутения из отработанного катализатора способно осуществить циклическое использование ресурсов рутения, что является очень важным для сохранения ресурсов и защиты окружающей среды и имеет большую экономическую ценность.
Один из известных способов извлечения рутения из катализатора на носителе заключается в использовании способа "щелочного плавления - окислительной отгонки" с получением кристаллов β-RuCl3·xH2O. Заявка на патент Китая № 200610052073.0 описывает способ извлечения рутения из рутениевого катализатора, нанесенного на активированный уголь, включающий стадии: прокаливания рутениевого катализатора, нанесенного на активированный уголь, без промотора на основе щелочного металла или щелочноземельного металла, при 600-1000°C в течение 2-20 часов с получением серо-черного соединения; смешивания серо-черного соединения с KOH и KNO3, нагрева их при 300-950°C в течение 1-5 часов и охлаждения их с получением продукта щелочного плавления; растворения продукта щелочного плавления в воде при 50-90°C с получением раствора K2RuO4; введения NaClO и концентрированной H2SO4 в раствор K2RuO4 и дистилляции раствора K2RuO4 при 50-90°C в течение 2-4 часов с получением газообразного RuO4; и использования сильной кислоты для поглощения газообразного RuO4 и отгонки концентрированной кислоты при нормальном давлении или ее отгонки при пониженном давлении с получением соли рутения. Способ является сложным в работе, имеет высокое потребление энергии и низкую долю извлечения продукта и имеет длительной период рециклирования.
В дополнение к этому, заявка на патент Китая № 200610106338.0 описывает способ получения порошка рутения высокого качества из растворов, содержащих рутений. Способ описывает стадию прокаливания (NH4)3RuCl6 с получением порошка рутения, стадию, включающую сначала прокаливание (NH4)3RuCl6 при 500-800°C с получением крупного порошка рутения, затем измельчение крупного порошка рутения и, наконец, стадию повторного прокаливания крупного порошка рутения при 800-1000°C с получением порошка рутения, имеющего содержание хлора в 100 ч./млн или меньше. Этот способ использует хлорид аммония для непосредственного осаждения Ru(III) в соляной кислоте, содержащей рутений, и для получения (NH4)3RuCl6, способ прокаливает (NH4)3RuCl6 и использует водород для восстановления (NH4)3RuCl6 для получения рутения. Этот способ способен получать порошок рутения высокого качества. Однако, поскольку (NH4)3RuCl6, полученный посредством осаждения Ru(III), имеет высокую растворимость в воде, осаждение рутения в растворе является неполным и доля извлечения является очень низкой.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
С учетом описанных выше проблем одной из целей настоящего изобретения является создание способа извлечения рутения из отработанного катализатора в виде оксида алюминия, нагруженного рутением, который является простым в работе, недорогим, имеет короткий период извлечения и высокую долю извлечения.
Для достижения указанной выше цели в соответствии с одним из вариантов осуществления настоящего изобретения предлагается способ извлечения рутения из отработанного катализатора в виде оксида алюминия, нагруженного рутением, способ включает:
1) сушку отработанного катализатора в виде оксида алюминия, нагруженного рутением, при 100-150°C в атмосфере азота в течение 1-2 часов, прокаливание отработанного катализатора в виде оксида алюминия, нагруженного рутением, при 300-500°C в течение 2-4 часов, охлаждение отработанного катализатора в виде оксида алюминия, нагруженного рутением, до комнатной температуры и измельчение отработанного катализатора в виде оксида алюминия, нагруженного рутением, в черный порошок, содержащий оксид рутения;
2) помещение черного порошка в реактор с псевдоожиженным слоем, продувку реактора с псевдоожиженным слоем азотом в течение 20-40 минут, а затем продувку реактора с псевдоожиженным слоем водородом и восстановление черного порошка с получением порошка, содержащего рутений, при температуре 200-400°C при давлении 1-2 МПа в течение 2-3 часов;
3) продувку реактора с псевдоожиженным слоем азотом в течение 20-40 минут, а затем введение газовой смеси кислорода и озона для окисления порошка, содержащего рутений, с получением газообразного RuO4 при температуре 500-750°C при давлении 1-2 МПа в течение 1-8 часов;
4) введение газообразного RuO4 в раствор 3-8 молярную соляную кислоту и полное растворение газообразного RuO4 с получением раствора H3RuCl6;
5) введение избытка окислителя в раствор H3RuCl6, перемешивание раствора H3RuCl6 в течение 0,5-1,5 часа до полного окисления раствора H3RuCl6 с образованием H2RuCl6, введение избытка NH4Cl в раствор H2RuCl6, нагрев раствора H2RuCl6 до 60-90°C, перемешивание раствора H2RuCl6 в течение 1-3 часов, фильтрование раствора H2RuCl6 с получением осадка на фильтре и промывку осадка на фильтре с получением твердого продукта (NH4)2RuCl6, где окислитель представляет собой растворимый хлорат; и
6) восстановление твердого продукта (NH4)2RuCl6 при температуре 450-800°C с использованием газовой смеси водорода и азота с получением рутения, где объемная доля водорода в газовой смеси составляет 1-15%.
В одном из видов данного варианта осуществления, на стадии 3), объемная скорость газовой смеси кислорода и озона составляет 1000-4000 час-1.
В одном из видов данного варианта осуществления, на стадии 3), объемная доля озона в газовой смеси кислорода и озона составляет 1-20%.
В одном из видов данного варианта осуществления, на стадии 4), концентрация раствора соляной кислоты составляет 6 моль/л.
В одном из видов данного варианта осуществления, на стадии 5), масса NH4Cl превышает в 1,2-2,5 раза теоретическую массу NH4Cl, которая необходима для полной реакции с раствором H2RuCl6.
В одном из видов данного варианта осуществления, на стадии 5), окислитель представляет собой одно или несколько из следующих соединений: хлорат аммония, хлорат калия, хлорат натрия и хлорат магния.
В одном из видов данного варианта осуществления, на стадии 5), осадок на фильтре промывают с помощью раствора этанола.
В одном из видов данного варианта осуществления, на стадии 5), раствор H2RuCl6 перемешивают при 100-400 об/мин в течение 1-3 часов. Кроме того, является предпочтительным, чтобы раствор H2RuCl6 перемешивали при 200 об/мин в течение 1,5-2,5 часов.
Функции и принцип технологических параметров на каждой стадии способа извлечения рутения из отработанного катализатора в виде оксида алюминия, нагруженного рутением, являются следующими:
Стадия 1) использует атмосферу азота для сушки и прокаливания при высоких температурах, которые могут эффективно удалять воду и остаточное органическое вещество в отработанном катализаторе. Полученный продукт содержит главным образом оксид рутения.
Стадия 2) восстанавливает оксид рутения в отработанном катализаторе до рутения в свободном состоянии, процесс реакции представляет собой:
RuO2+2H2=Ru+2H2O
Процессы реакции на стадии 3) представляют собой:
Ru+2O2=RuO4↑ и 3Ru+4O3=3RuO4↑,
и в газовой смеси можно использовать воздух или чистый кислород.
На стадии 4) газообразный RuO4 вводят в достаточное количество раствора 3-8 молярной соляной кислоты и газообразный RuO4 полностью поглощается и восстанавливается до раствора H3RuCl6, процесс реакции представляет собой:
2RuO4+22HCl=2H3RuCl6+8H2O+5Cl2↑.
Стадия 5) использует окислитель для окисления раствора H3RuCl6 в H2RuCl6, а затем вводит избыток хлорида аммония с получением осадка (NH4)2RuCl6, процессы реакции представляют собой:
6RuCl6 3-+ClO3 -+6H+=6RuCl6 2-+Cl-+3H2O и
RuCl6 2-+2NH4 +=(NH4)2RuCl6↓.
На стадии 5) для полного осаждения рутения нужно вводить избыток хлорида аммония. Предпочтительно, масса NH4Cl должна превышать в 1,2-2,5 раза теоретическую массу NH4Cl, которая необходима для полной реакции с раствором H2RuCl6 и для увеличения доли извлечения. Однако когда вводят избыток хлорида аммония, непрореагировавший хлорид аммония может кристаллизоваться. Для полного осаждения H2RuCl6 и для понижения содержания воды в осадке, количество вводимого хлорида аммония должно контролироваться и необходимо перемешивать раствор H2RuCl6 при 100-400 об/мин в течение 1-3 часов при введении хлорида аммония.
На стадии 6) твердый продукт (NH4)2RuCl6 восстанавливается с помощью водорода при высоких температурах с получением металлического рутения. С помощью дополнительной обработки металлического рутения может быть получен порошок рутения для получения целевого материала.
По сравнению с обычным способом "щелочного плавления - окислительной отгонки" в способе по настоящему изобретению после получения раствора H3RuCl6, который содержит рутений, на стадии извлечения, вводят окислитель для полного окисления раствора H3RuCl6 до H2RuCl6, а затем вводят избыток хлорида аммония с получением осадка (NH4)2RuCl6, это увеличивает долю осаждения рутения из раствора. В дополнение к этому, осадок (NH4)2RuCl6 можно непосредственно использовать для получения металлического рутения посредством восстановления при прокаливании с помощью водорода при высоких температурах. Процесс извлечения по настоящему способу является простым в работе, имеет низкое потребление энергии в реакции, осуществляет эффективное рециклирование рутения из отработанного катализатора в виде оксида алюминия, нагруженного рутением, повышает экономическую выгоду и является преимущественным для повторного использования рутения.
ПОДРОБНОЕ ОПИСАНИЕ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ
Для дополнительного иллюстрирования изобретения способа извлечения рутения из отработанного катализатора в виде оксида алюминия, нагруженного рутением, ниже описываются подробные варианты осуществления. Необходимо отметить, что следующие далее примеры предназначены для описания, а не для ограничения настоящего изобретения.
Пример 1
Способ извлечения рутения из отработанного катализатора в виде оксида алюминия, нагруженного рутением, способ включает:
1) взвешивание 90 г отработанного катализатора в виде оксида алюминия, нагруженного рутением (в котором массовое процентное содержание рутения составляет 5,0%), и помещение отработанного катализатора в тигель, помещение тигля в муфельную печь, продувку муфельной печи азотом, сушку отработанного катализатора в виде оксида алюминия, нагруженного рутением, при 100-150°C в атмосфере азота в течение 1-2 часов, прокаливание отработанного катализатора в виде оксида алюминия, нагруженного рутением, при 300-500°C в течение 2-4 часов для удаления остаточных органических веществ с отработанного катализатора, охлаждение до комнатной температуры с получением 81,2 г черного твердого продукта и измельчение черного твердого продукта в черный твердый порошок;
2) помещение 60 г полученного черного порошка в реактор с псевдоожиженным слоем, продувку реактора с псевдоожиженным слоем азотом в течение 30 минут, а затем продувку реактора с псевдоожиженным слоем водородом и восстановление черного порошка с получением порошка, содержащего металлический рутений, при температуре 300°C при давлении 1,0 МПа в течение 2 часов;
3) продувку реактора с псевдоожиженным слоем азотом в течение 20 минут, а затем введение газовой смеси кислорода и озона для окисления порошка, содержащего рутений, с получением газообразного RuO4 при температуре 600-650°C при давлении 1 МПа в течение 4 часов, при этом объемная скорость газовой смеси кислорода и озона составляет 1200 час-1 и объемная доля озона в газовой смеси кислорода и озона составляет 20%;
4) введение газообразного RuO4 в раствор 6 молярной соляной кислоты и полное поглощение газообразного RuO4 с получением раствора H3RuCl6;
5) медленное введение 0,63 г (что превышает в 1,2 раза теоретическую массу 0,525 г, которая необходима для полной реакции) порошка окислителя NaClO3 в раствор H3RuCl6, перемешивание раствора H3RuCl6 в течение 0,5 часа до полного окисления раствора H3RuCl6 с образоваанием H2RuCl6, введение 3,81 г NH4Cl (что превышает в 1,2 раза теоретическую массу 3,18 г NH4Cl, которая необходима для полной реакции) в раствор H2RuCl6, нагрев раствора H2RuCl6 до 90°C, перемешивание раствора H2RuCl6 в течение 1,5 часа при 200 об/мин с получением осадка (NH4)2RuCl6, фильтрование раствора H2RuCl6 с получением осадка на фильтре, промывку осадка на фильтре с помощью раствора этанола для удаления примесей и соляной кислоты из осадка на фильтре и сушку осадка на фильтре с получением твердого продукта (NH4)2RuCl4; и
6) восстановление твердого продукта (NH4)2RuCl6 при температуре 650°C с использованием газовой смеси водорода и азота с получением металлического рутения, объемная доля водорода в газовой смеси составляет 5%, масса металлического рутения согласно измерениям составляет 2,941 г.
В этом варианте осуществления доля извлечения рутения составляет 98,03%.
Пример 2
Способ извлечения рутения из отработанного катализатора в виде оксида алюминия, нагруженного рутением, способ включает:
1) взвешивание 90 г отработанного катализатора в виде оксида алюминия, нагруженного рутением (в котором массовое процентное содержание рутения составляет 5,0%), и помещение отработанного катализатора в тигель, помещение тигля в муфельную печь, продувку муфельной печи азотом, сушку отработанного катализатора в виде оксида алюминия, нагруженного рутением, при 100-150°C в атмосфере азота в течение 1-2 часов, прокаливание отработанного катализатора в виде оксида алюминия, нагруженного рутением, при 300-500°C в течение 2-4 часов для удаления остаточных органических веществ с отработанного катализатора, охлаждение до комнатной температуры с получением 81,2 г черного твердого продукта и измельчение черного твердого продукта в черный твердый порошок;
2) помещение 60 г полученного черного порошка в реактор с псевдоожиженным слоем, продувку реактора с псевдоожиженным слоем азотом в течение 20 минут, а затем продувку реактора с псевдоожиженным слоем водородом и восстановление черного порошка с получением порошка, содержащего металлический рутений, при температуре 200°C при давлении 1,5 МПа в течение 3 часов;
3) продувку реактора с псевдоожиженным слоем азотом в течение 30 минут, а затем введение газовой смеси кислорода и озона для окисления порошка, содержащего рутений, с получением газообразного RuO4 при температуре 600°C при давлении 1,5 МПа в течение 4 часов, при этом объемная скорость газовой смеси кислорода и озона составляет 3000 час-1 и объемная доля озона в газовой смеси кислорода и озона составляет 10%;
4) введение газообразного RuO4 в раствор 3 молярной соляной кислоты и полное растворение газообразного RuO4 с получением раствора H3RuCl6;
5) медленное введение 0,72 г (что превышает в 1,2 раза теоретическую массу, которая необходима для полной реакции) порошка окислителя KClO3 в раствор H3RuCl6, перемешивание раствора H3RuCl6 в течение 1 часа до полного окисления раствора H3RuCl6 с образованием H2RuCl6, введение 4,77 г NH4Cl (что в 1,5 раза превышает теоретическую массу NH4Cl, которая необходима для полной реакции) в раствор H2RuCl6, нагрев раствора H2RuCl6 до 80°C, перемешивание раствора H2RuCl6 в течение 1,5 часа при 200 об/мин с получением осадка (NH4)2RuCl6, фильтрование раствора H2RuCl6 с получением осадка на фильтре, промывку осадка на фильтре с помощью раствора этанола для удаления примесей и соляной кислоты из осадка на фильтре и сушку осадка на фильтре с получением твердого продукта (NH4)2RuCl6; и
6) восстановление твердого продукта (NH4)2RuCl6 при температуре 800°C с использованием газовой смеси водорода и азота с получением металлического рутения, объемная доля водорода в газовой смеси составляет 10%, масса металлического рутения согласно измерениям составляет 2,976 г.
В этом варианте осуществления доля извлечения рутения составляет 99,2%.
Пример 3
Способ извлечения рутения из отработанного катализатора в виде оксида алюминия, нагруженного рутением, способ включает:
1) взвешивание 90 г отработанного катализатора в виде оксида алюминия, нагруженного рутением (в котором массовое процентное содержание рутения составляет 5,0%), и помещение отработанного катализатора в тигель, помещение тигля в муфельную печь, продувку муфельной печи азотом, сушку отработанного катализатора в виде оксида алюминия, нагруженного рутением, при 100-150°C в атмосфере азота в течение 1-2 часов, прокаливание отработанного катализатора в виде оксида алюминия, нагруженного рутением, при 300-500°C в течение 2-4 часов для удаления остаточных органических веществ в отработанном катализаторе, охлаждение до комнатной температуры с получением 81,2 г черного твердого продукта и измельчение черного твердого продукта в черный твердый порошок;
2) помещение 60 г полученного черного порошка в реактор с псевдоожиженным слоем, продувку реактора с псевдоожиженным слоем азотом в течение 40 минут, а затем продувку реактора с псевдоожиженным слоем водородом и восстановление черного порошка с получением порошка, содержащего металлический рутений, при температуре 400°C при давлении 2,0 МПа в течение 2,5 часов;
3) продувку реактора с псевдоожиженным слоем азотом в течение 40 минут, а затем введение газовой смеси кислорода и озона для окисления порошка, содержащего рутений, с получением газообразного RuO4 при температуре 650°C при давлении 2 МПа в течение 5 часов, при этом объемная скорость газовой смеси кислорода и озона составляет 4000 час-1 и объемная доля озона в газовой смеси кислорода и озона составляет 15%;
4) введение газообразного RuO4 в раствор 5 молярной соляной кислоты и полное растворение газообразного RuO4 с получением раствора H3RuCl6;
5) медленное введение 1,13 г (что превышает в 1,2 раза теоретическую массу, которая необходима для полной реакции) порошка окислителя Mg(ClO3)2 в раствор H3RuCl6, перемешивание раствора H3RuCl6 в течение 1,5 часа до полного окисления раствора H3RuCl6 с образованием H2RuCl6, введение 6,36 г NH4Cl (что превышает в 2 раза теоретическую массу NH4Cl, которая необходима для полной реакции) в раствор H2RuCl6, нагрев раствора H2RuCl6 до 90°C, перемешивание раствора H2RuCl6 в течение 2,5 часа при 100 об/мин с получением осадка (NH4)2RuCl6, фильтрование раствора H2RuCl6 с получением осадка на фильтре, промывку осадка на фильтре с помощью раствора этанола для удаления примесей и соляной кислоты из осадка на фильтре и сушку осадка на фильтре с получением твердого продукта (NH4)2RuCl6; и
6) восстановление твердого продукта (NH4)2RuCl6 при температуре 650°C с использованием газовой смеси водорода и азота с получением металлического рутения, объемная доля водорода в газовой смеси составляет 15%, масса металлического рутения согласно измерениям составляет 2,946 г.
В этом варианте осуществления доля извлечения рутения составляет 98,2%.
Пример 4
Способ извлечения рутения из отработанного катализатора в виде оксида алюминия, нагруженного рутением, способ включает:
1) взвешивание 90 г отработанного катализатора в виде оксида алюминия, нагруженного рутением (в котором массовое процентное содержание рутения составляет 5,0%), и помещение отработанного катализатора в тигель, помещение тигля в муфельную печь, продувку муфельной печи азотом, сушку отработанного катализатора в виде оксида алюминия, нагруженного рутением, при 100-150°C в атмосфере азота в течение 1-2 часов, прокаливание отработанного катализатора в виде оксида алюминия, нагруженного рутением, при 300-500°C в течение 2-4 часов для удаления остаточных органических веществ в отработанном катализаторе, охлаждение до комнатной температуры с получением 81,2 г черного твердого продукта и измельчение черного твердого продукта в черный твердый порошок;
2) помещение 60 г полученного черного порошка в реактор с псевдоожиженным слоем, продувку реактора с псевдоожиженным слоем азотом в течение 25 минут, а затем продувку реактора с псевдоожиженным слоем водородом и восстановление черного порошка с получением порошка, содержащего металлический рутений, при температуре 350°C при давлении 2,0 МПа в течение 3 часов;
3) продувку реактора с псевдоожиженным слоем азотом в течение 35 минут, а затем введение газовой смеси кислорода и озона для окисления порошка, содержащего рутений, с получением газообразного RuO4 при температуре 600°C при давлении 2 МПа в течение 6 часов, при этом объемная скорость газовой смеси кислорода и озона составляет 4000 час-1 и объемная доля озона в газовой смеси кислорода и озона составляет 5%;
4) введение газообразного RuO4 в раствор 6 молярной соляной кислоты и полное растворение газообразного RuO4 с получением раствора H3RuCl6;
5) медленное введение 0,63 г (что превышает в 1,2 раза теоретическую массу, которая необходима для полной реакции) порошка окислителя NaClO3 в раствор H3RuCl6, перемешивание раствора H3RuCl6 в течение 1,5 часа до полного окисления раствора H3RuCl6 с образованием H2RuCl6, введение 7,94 г NH4Cl (что превышает в 2,5 раза теоретическую массу NH4Cl, которая необходима для полной реакции) в раствор H2RuCl6, нагрев раствора H2RuCl6 до 70°C, перемешивание раствора H2RuCl6 в течение 1 часа при 400 об/мин с получением осадка (NH4)2RuCl6, фильтрование раствора H2RuCl6 с получением осадка на фильтре, промывку осадка на фильтре с помощью раствора этанола для удаления примесей и соляной кислоты из осадка на фильтре и сушку осадка на фильтре с получением твердого продукта (NH4)2RuCl6; и
6) восстановление твердого продукта (NH4)2RuCl6 при температуре 800°C с использованием газовой смеси водорода и азота с получением металлического рутения, объемная доля водорода в газовой смеси составляет 15%, масса металлического рутения согласно измерениям составляет 2,901 г.
В этом варианте осуществления доля извлечения рутения составляет 96,7%.
Изобретение относится к извлечению рутения из отработанного катализатора в виде оксида алюминия, содержащего рутений. Способ включает его сушку, прокаливание, охлаждение и измельчение в черный порошок, содержащий оксид рутения. Помещение его в реактор с псевдоожиженным слоем, введение водорода для восстановления с получением при этом порошка, содержащего металлический рутений. Далее в реактор с восстановленным порошком вводят газовую смесь из кислорода и озона с получением при этом газообразного RuO4. Далее газообразный RuO4 вводят в раствор соляной кислоты с получением раствора H3RuCl6 и добавляют к нему избыток окислителя для образования гексахлорорутениевой (IV) кислоты. Далее добавляют избыток NH4Cl для получения твердого продукта гексахлорорутената (IV) аммония. Далее его восстанавливают и получают металлический рутений. Обеспечивается высокая степень извлечения рутения и упрощение процесса. 8 з.п. ф-лы, 4 пр.
1. Способ извлечения рутения из отработанного катализатора в виде оксида алюминия, содержащего рутений, включающий:
1) сушку отработанного катализатора при 100-150°C в атмосфере азота в течение 1-2 часов, прокаливание при 300-500°C в течение 2-4 часов, охлаждение до комнатной температуры и измельчение отработанного катализатора до черного порошка, содержащего оксид рутения,
2) размещение черного порошка в реактор с псевдоожиженным слоем, продувку реактора с псевдоожиженным слоем азотом в течение 20-40 минут, а затем продувку реактора с псевдоожиженным слоем водородом и восстановление черного порошка с получением порошка, содержащего рутений, при температуре 200-400°C при давлении 1-2 МПа в течение 2-3 часов,
3) продувку реактора с псевдоожиженным слоем азотом в течение 20-40 минут, а затем введение газовой смеси кислорода и озона для окисления порошка, содержащего рутений, с получением газообразного RuO4 при температуре 500-750°C при давлении 1-2 МПа в течение 1-8 часов,
4) введение газообразного RuO4 в раствор 3-8 молярной соляной кислоты и полное растворение газообразного RuO4 с получением раствора H3RuCl6,
5) медленное введение избытка окислителя в раствор H3RuCl6, перемешивание раствора H3RuCl6 в течение 0,5-1,5 часа до полного окисления раствора H3RuCl6 с образованием H2RuCl6, введение избытка NH4Cl в раствор H2RuCl6, нагрев раствора H2RuCl6 до 60-90°C, перемешивание раствора H2RuCl6 в течение 1-3 часов, фильтрование раствора H2RuCl6 с получением осадка на фильтре и промывку осадка на фильтре с получением твердого продукта (NH4)2RuCl6, при этом окислитель представляет собой растворимый хлорат,
6) восстановление твердого продукта (NH4)2RuCl6 при температуре 450-800°C с использованием газовой смеси водорода и азота с получением рутения, при этом объемная доля водорода в газовой смеси составляет 1-15%.
2. Способ по п. 1, в котором на стадии 3) объемная скорость газовой смеси кислорода и озона составляет 1000-4000 час-1.
3. Способ по п. 1 или 2, в котором на стадии 3) объемная доля озона в газовой смеси кислорода и озона составляет 1-20%.
4. Способ по п. 1 или 2, в котором на стадии 4) концентрация раствора соляной кислоты составляет 6 моль/л.
5. Способ по п. 1 или 2, в котором на стадии 5) масса NH4Cl превышает в 1,2-2,5 раза теоретическую массу NH4Cl, которая необходима для полной реакции с раствором H2RuCl6.
6. Способ по п. 1 или 2, в котором на стадии 5) окислитель представляет собой одно или несколько из следующих соединений: хлорат аммония, хлорат калия, хлорат натрия и хлорат магния.
7. Способ по п. 1 или 2, в котором на стадии 5) осадок на фильтре промывают с помощью раствора этанола.
8. Способ по п. 1 или 2, в котором на стадии 5) раствор H2RuCl6 перемешивают при 100-400 об/мин в течение 1-3 часов.
9. Способ по п. 8, в котором на стадии 5) раствор H2RuCl6 перемешивают при 200 об/мин в течение 1,5-2,5 часов.
CN 101270420 A, 24.09.2008 | |||
CN 102108444 A, 29.06.2011 | |||
CN 101700913 A, 05.05.2010 | |||
СПОСОБ ПОЛУЧЕНИЯ КОНЦЕНТРАТА РОДИЯ, ПАЛЛАДИЯ И РУТЕНИЯ ИЗ АЗОТНОКИСЛЫХ РАСТВОРОВ | 2003 |
|
RU2239666C1 |
US 7935173 B1, 03.05.2011. |
Авторы
Даты
2016-04-10—Публикация
2013-03-04—Подача