СПОСОБ РАЗВОДОРОЖИВАНИЯ СВАРНЫХ ШВОВ МАГИСТРАЛЬНЫХ ГАЗОПРОВОДОВ Российский патент 2016 года по МПК B23K37/00 B23K31/02 B23K28/00 

Описание патента на изобретение RU2580582C2

Изобретение относится к анализу материалов радиационными методами и может быть использовано для разводороживания сварных швов магистральных газопроводов.

Водород, также как кислород и азот, растворяется в расплавляемом при сварке металле. Он попадает в металл из воздуха, содержащего пары воды, из влаги покрытия электродов; из ржавчины, находящейся на поверхности металла изделия, и электродов. Водород содержится также в электродных покрытиях и в самом металле. Количество водорода в металле шва и зоне термического влияния зависит от качества сварочных материалов и способа сварки. Так при автоматической сварке под флюсом содержание водорода может достигать 5 см3/100 г наплавленного металла, а при ручной дуговой сварке покрытыми электродами более 30 см3/100 г (М.Д. Банов, Ю.В. Казаков, М.Г. Козулин и др.; под ред. Ю.В. Казакова, Сварка и резка материалов: Учебное пособие. - Издание 2-е, стереотипное. - Издательский центр «Академия», 2002. - 400 с.). При большой концентрации водорода в сварных швах сталь стенки становится хрупкой, что приводит к потере устойчивости трубопроводов и их разрушению (В.Н. Поляков. Катастрофы трубопроводов большого диаметра. Роль полей водорода. Проблемы прочности. 1995, - №1. - С. 137-146).

Известен способ разводороживания стали путем нагрева (Походня И.К., Швачко В.И., Степанюк С.Н. Водородные ловушки в сварных швах. Водородная обработка металлов. Труды 3-й Международной конференции ВОМ-2001. Донецк. 2001. 42. С. 297-298). Недостаток способа состоит в том, что он требует применения стационарных нагревательных печей, используется в заводских и лабораторных условиях и неприменим в полевых условиях прокладки газопроводов.

Известен способ удаления водорода из поковки (металла) с использованием нагрева шва в интервале температур от 660 до 700°С с выдержкой при этой температуре в печи в течение часа и последующим охлаждением до температуры 240…260ºС. Охлаждение поковки производят со скоростью 5…20ºС/час. Это позволяет повысить производительность термических печей и сократить расход топлива на термообработку единицы продукции. (Патент РФ №2252268. Способ термической противофлокенной обработки поковок // Воробьев Н.И., Лившиц Д.А., Подкорытов А.Л. и др.). Недостаток способа - технологический процесс в печах, в стационарных условиях, что делает его неприменимым в условиях прокладки газопровода.

Известен способ разводороживания стали путем обработки вакуумом (М.Д. Банов, Ю.В. Казаков, М.Г. Козулин и др.; под ред. Ю.В. Казакова, Сварка и резка материалов: Учебное пособие. - Издание 2-е, стереотипное. - Издательский центр «Академия», 2002. - 400 с.). В лабораторных условиях это одно из самых эффективных и доступных решений для удаления водорода. Недостатком способа является его узкая направленность, т.к. требуется применение сложного дорогостоящего устройства - вакууматора.

Наиболее близким к предлагаемому решению по использованию и достигаемому результату является способ разводороживания труб магистральных газопроводов, использующих ионизирующее излучение (Способ и устройство разводороживания стенок магистральных газопроводов, RU 2402755, Лапшин Б.М., Мамонтов А.П.). В данном способе перемещают облучающее устройство (радиоактивный кобальт, закрепленный на тележке) по всей длине внутри трубопровода, непрерывно облучают ионизирующим излучением стенки трубопровода, возбуждают водородную атмосферу в стенках трубы, стимулируют выход водорода из стенок трубы и обеспечивают возможности разводороживания материала стенок магистральных газопроводов за счет облучения ионизирующим излучением.

Недостаток прототипа заключается в том, что излучатель находится внутри трубы, так что вышедший водород попадает как наружу, так и вовнутрь трубы. Водород, попавший внутрь трубы, вновь поглощается материалом стенок, что снижает эффективность способа.

Задача - удаление водорода и устранение охрупчивания сварных швов газопровода за счет облучения их пучком электронов.

Для решения поставленной задачи при изготовлении сварного шва непрерывно измеряют его температуру, при достижении 200-240ºС в одной из точек шва над ней устанавливают выпускное устройство ускорителя электронов и облучают сварной шов электронами. При облучении одновременно контролируют температуру сварного шва. При уменьшении температуры шва до 60-80ºС перемещают ускоритель электронов вдоль шва, повторяя процесс измерения температуры и облучения шва электронами.

На фиг. 1 приведена схема разводороживания сварного шва 1 стенок трубы, облучаемого электронным пучком ускорителя 4. Термопара 2 и датчик измерения температуры 3 служат для измерения температуры сварного шва 1.

На фиг. 2 показана зависимость количества вышедшего водорода из стали 12Х18Н10Т от температуры сварного шва: I - при его облучении пучком электронов током 20 мА, II - без облучения.

На фиг. 3 показана зависимость содержания водорода в стали 12Х18Н10Т от температуры сварного шва при его облучении пучком электронов (ток 20 мА).

В процессе сварки магистральных труб измеряют температуру сварного шва 1 на стыке свариваемых труб термопарой 2 с датчиком измерения температуры 3. При достижении температуры шва 200-240ºС на шов ставят выпускное устройство ускорителя электронов 4 с энергией 100 кэВ и током пучка 20 мА (фиг. 1). Включают ускоритель электронов 4 и облучают сварной шов 1, одновременно измеряя его температуру в течение времени, пока температура шва не уменьшится до 60-80ºС. Ускоритель электронов 4 передвигают, обеспечивая его радиальное перемещение над швом трубы.

Известно, что при охлаждении стали до 100-150º сокращается время выхода водорода из стали и степень разводороживания металла, т.к. диффузия при 100-150º идет с большей скоростью, чем при комнатной температуре 20-30º. Однако простой нагрев и охлаждение не приводят к полному разводороживанию шва трубопровода (см. фиг. 2). При этом надо учесть, что при температуре шва 900ºС образуются ловушки, в которые интенсивно натекает водород. Он попадает в металл из воздуха, содержащего пары воды, из влаги покрытия электродов, из ржавчины, находящейся на поверхности металла изделия и электродов. При высокой температуре влага превращается в пар и диссоциирует на водород и кислород. Водород содержится в электродных покрытиях и в самом металле при изготовлении на заводе. В результате наводороживания появляются трещины по всему шву газопровода. Облучение наводороженной трубопроводной стали приводит к существенному улучшению состояния поверхности в результате интенсивной диффузии и выхода водорода из металла. Облучение проводится при токах 20 мА и энергии 100 кэВ. При меньшем токе не достигается достаточной степени выхода водорода из стенок газопровода.

Нагрев с одновременным воздействием электронного пучка сопровождается сдвигом положения максимума, выходящего из стали потока водорода в низкотемпературную область, например, для стали марки 12Х18Н10Т такая температура равна 60-80ºС (фиг. 2, кривая 1). Высокая температура шва позволяет избегать применения дополнительных устройств для разогрева образца и сокращать время разводороживания сварного шва.

Разводороживание сварного шва осуществляют по следующему алгоритму: на сварной шов 1 по окончании процесса сварки листов стали устанавливают термопару 2 с датчиком измерения температуры 3 сварного шва 1 в процессе его остывания. При достижении в измеряемой точке сварного шва 1 температуры 200-240ºС в этом месте шва устанавливают выпускное устройство ускорителя электронов 4, включают его, облучают сварной шов 1 электронами. Одновременно контролируют температуру сварного шва 1. При уменьшении температуры сварного шва 1 до 60-70ºС перемещают термопару 2 датчиком измерения температуры 3 в другую точку, последовательно повторяя измерение температуры сварного шва 1 и облучение сварного шва ускорителем 4 вдоль сварного шва до тех пор, пока не будет пройден весь шов магистрального газопровода.

Конкретный пример разводороживания сварного шва

Для сварки двух листов стали марки 12Х18Н10Т используют электроды УОНИ 13/45, с диаметром стержня 4 мм. Эти электроды дают наименьший разброс содержания водорода в наплавленном металле от 5.25 до 5.74 см3/100 г. Наплавку производят электродом УОНИ 13/55, диаметр стержня 4 мм, Iсв=150 A, Uсв=24 В. Прокалку электрода осуществляют в соответствии с режимом, указанным на упаковке. После окончания сварки на сварной шов 1 помещают термопару 2 поверхностного измерителя температуры 3 Testo 905-Т2 и измеряют температуру шва термопарой 2 измерителя температуры 3 Testo 905-Т2. И при достижении температуры шва 220ºС, термопару перемещают вдоль шва в следующую точку, а на место, где находилась термопара, помещают облучатель ускорителя электронов 4 марки 6ЭЛВ-мини, позволяющий облучать материал электронами в атмосфере. Энергия пучка электронов составляет 100 кэВ, ток пучка равен 20 мА. Облучают сварной шов 1 электронным пучком ускорителя электронов 4 до тех пор, пока температура сварного шва не снизится до 60-80ºС. Затем перемещают ускоритель электронов 4 в следующую точку сварного шва 1. Процесс повторяют по всей длине сварного шва свариваемых труб.

В ходе проведения испытаний фиксируют содержание водорода в сварном шве газопровода методом термоЭДС по калибровочному графику зависимости содержания водорода в металле сварного шва от величины термоЭДС или расплавляя в камере прибора анализатора водорода LECO вырезанный образец сварного шва, фиг. 3.

Похожие патенты RU2580582C2

название год авторы номер документа
СПОСОБ РАЗВОДОРОЖИВАНИЯ СВАРНЫХ ШВОВ ТОЛСТОСТЕННЫХ ТРУБ МАГИСТРАЛЬНЫХ ГАЗОПРОВОДОВ 2017
  • Тюрин Юрий Иванович
  • Ларионов Виталий Васильевич
  • Семкина Людмила Иосифовна
  • Никитенков Николай Николаевич
RU2657676C1
Способ сварки прямошовных труб большого диаметра 2020
  • Фрункин Дмитрий Борисович
RU2757447C1
СПОСОБ ИЗГОТОВЛЕНИЯ СТАЛЬНОЙ ТРУБЫ ЛАЗЕРНОЙ СВАРКОЙ 2009
  • Яно Кодзи
  • Ои Кендзи
  • Сузуки Масахито
  • Кодама Тосифуми
  • Сакасита Сигето
RU2456107C1
СПОСОБ И УСТРОЙСТВО РАЗВОДОРОЖИВАНИЯ СТЕНОК МАГИСТРАЛЬНЫХ ГАЗОПРОВОДОВ 2008
  • Лапшин Борис Михайлович
  • Мамонтов Аркадий Павлович
RU2402755C2
СПОСОБ ОБРАЗОВАНИЯ СТЫКОВЫХ СВАРНЫХ ШВОВ НА ТРУБАХ 2005
  • Козий Сергей Иванович
  • Батраев Геннадий Андреевич
  • Козий Софья Сергеевна
RU2293639C2
СВАРНЫЕ КОНСТРУКЦИИ ИЗ КОРРОЗИОННО-УСТОЙЧИВЫХ СПЛАВОВ В КОНСТРУКЦИЯХ ИЗ УГЛЕРОДИСТОЙ СТАЛИ И ТРУБОПРОВОДАХ, ВЫДЕРЖИВАЮЩИЕ ВЫСОКИЕ ОСЕВЫЕ ПЛАСТИЧЕСКИЕ ДЕФОРМАЦИИ 2008
  • Бисон Дэнни Л.
  • Лебле Джеймс Б. Мл.
RU2452779C2
ТЕХНОЛОГИЧЕСКАЯ ЛИНИЯ ДЛЯ ИЗГОТОВЛЕНИЯ СПИРАЛЬНО-ШОВНЫХ ТРУБ ИЗ ОТДЕЛЬНЫХ ЛИСТОВ 2006
  • Лубе Игорь Иванович
  • Челышев Валерий Валентинович
  • Пермяков Игорь Львович
  • Вятченников Владимир Владимирович
  • Машинсон Израиль Зиновьевич
  • Лючков Анатолий Демьянович
  • Райчук Юрий Исаакович
  • Кардаев Николай Евгеньевич
  • Евсеев Николай Михайлович
RU2308339C1
ТЕХНОЛОГИЧЕСКАЯ ЛИНИЯ ДЛЯ ИЗГОТОВЛЕНИЯ СПИРАЛЬНО-ШОВНЫХ ТРУБ ИЗ РУЛОННОГО ПРОКАТА 2006
  • Лубе Игорь Иванович
  • Челышев Валерий Валентинович
  • Пермяков Игорь Львович
  • Вятченников Владимир Владимирович
  • Машинсон Израиль Зиновьевич
  • Лючков Анатолий Демьянович
  • Райчук Юрий Исаакович
  • Кардаев Николай Евгеньевич
  • Евсеев Николай Михайлович
RU2308337C1
ТЕХНОЛОГИЧЕСКАЯ ЛИНИЯ ДЛЯ ИЗГОТОВЛЕНИЯ СПИРАЛЬНОШОВНЫХ ТРУБ ИЗ ОТДЕЛЬНЫХ ЛИСТОВ 2006
  • Лубе Игорь Иванович
  • Челышев Валерий Валентинович
  • Пермяков Игорь Львович
  • Вятченников Владимир Владимирович
  • Машинсон Израиль Зиновьевич
  • Лючков Анатолий Демьянович
  • Райчук Юрий Исаакович
  • Кардаев Николай Евгеньевич
  • Евсеев Николай Михайлович
RU2320439C2
ТЕХНОЛОГИЧЕСКАЯ ЛИНИЯ ДЛЯ ИЗГОТОВЛЕНИЯ СПИРАЛЬНО-ШОВНЫХ ТРУБ ИЗ ОТДЕЛЬНЫХ ЛИСТОВ 2006
  • Лубе Игорь Иванович
  • Челышев Валерий Валентинович
  • Пермяков Игорь Львович
  • Вятченников Владимир Владимирович
  • Машинсон Израиль Зиновьевич
  • Лючков Анатолий Демьянович
  • Райчук Юрий Исаакович
  • Кардаев Николай Евгеньевич
  • Евсеев Николай Михайлович
RU2308338C1

Иллюстрации к изобретению RU 2 580 582 C2

Реферат патента 2016 года СПОСОБ РАЗВОДОРОЖИВАНИЯ СВАРНЫХ ШВОВ МАГИСТРАЛЬНЫХ ГАЗОПРОВОДОВ

Изобретение относится к анализу материалов радиационными методами и может быть использовано для разводороживания сварных швов магистральных газопроводов. При изготовлении сварного шва измеряют его температуру и при достижении в одной из точек шва температуры 200-240ºС над ней устанавливают выпускное устройство ускорителя электронов. Включают ускоритель и облучают шов электронами, одновременно контролируя температуру сварного шва. При снижении температуры шва до 60-80ºС перемещают ускоритель вдоль шва к другим его точкам радиально по поверхности свариваемых труб, повторяя процесс измерения температуры и облучения шва электронами. Изобретение позволяет разводороживать сварные швы магистральных газопроводов в процессе их изготовления за счет облучения электронами, что, в свою очередь, обеспечивает возможность устранения охрупчивания швов газопровода и увеличивает срок его службы. 3 ил., 1 пр.

Формула изобретения RU 2 580 582 C2

Способ разводороживания сварных швов магистральных газопроводов, включающий обработку сварных швов трубопровода ионизирующим излучением для выхода водорода из шва трубы, отличающийся тем, что в процессе выполнения сварного шва непрерывно измеряют его температуру и при достижении в одной из точек шва температуры 200-240°С над ней устанавливают выпускное устройство ускорителя электронов и облучают сварной шов электронами, одновременно контролируют температуру шва, а при снижении температуры шва до 60-80°С перемещают ускоритель электронов вдоль сварного шва к другим его точкам с повторением процесса измерения температуры и облучения сварного шва.

Документы, цитированные в отчете о поиске Патент 2016 года RU2580582C2

СПОСОБ И УСТРОЙСТВО РАЗВОДОРОЖИВАНИЯ СТЕНОК МАГИСТРАЛЬНЫХ ГАЗОПРОВОДОВ 2008
  • Лапшин Борис Михайлович
  • Мамонтов Аркадий Павлович
RU2402755C2
СПОСОБ ПРОИЗВОДСТВА ЗАГОТОВОК ИЗ БЫСТРОЗАКРИСТАЛЛИЗОВАННЫХ АЛЮМИНИЕВЫХ СПЛАВОВ 2011
  • Конкевич Валентин Юрьевич
  • Лебедева Татьяна Ивановна
  • Бочвар Сергей Георгиевич
RU2467830C1
US20100330388A1,30.12.2010
US4475963A1,09.10.1984.

RU 2 580 582 C2

Авторы

Лидер Андрей Маркович

Ларионов Виталий Васильевич

Долгов Антон Сергеевич

Семкина Людмила Иосифовна

Даты

2016-04-10Публикация

2014-07-29Подача