ФУНКЦИОНАЛЬНЫЙ ГЕНЕРАТОР КВАДРАТУРНЫХ СИГНАЛОВ Российский патент 2016 года по МПК H03B27/00 

Описание патента на изобретение RU2582556C1

Изобретение относится к области электроники и может быть использовано в измерительной технике и автоматике.

Известно устройство [Шустов М. Функциональный генератор. - Радиомир, 2010, №7, с. 26-27], содержащее источник квадратурных сигналов, два двухполупериодных выпрямителя, сумматор и формирователь биполярных прямоугольных импульсов, причем первый и второй выходы источника квадратурных сигналов соединены соответственно с входами первого и второго двухполупериодных выпрямителей, выходы которых соединены с входами сумматора, к выходу которого подключен формирователь биполярных прямоугольных импульсов, при этом первый, второй и третий выходы функционального генератора соединены соответственно с первым выходом источника квадратурных сигналов, с выходом сумматора и выходом формирователя биполярных прямоугольных импульсов.

Синтезированный сигнал треугольной формы имеет S-образные характеристики как на участке прямого хода (линейно нарастающее напряжение), так и на участке обратного хода (линейно спадающее напряжение) и имеет весьма низкую линейность [Лозицкий С. Схемотехнические САПР: возможности и проблемы эффективного использования. Схемотехника, 2007, №3, с. 38-40], что существенно сужает область практического применения схемы. Кроме того, частота сигнала треугольной формы и биполярного сигнала прямоугольной формы вдвое превышает частоту исходного гармонического сигнала, что не позволяет при фиксированной настройке генератора получить одинаковые значения частот на всех выходах генератора. Следует также учитывать, что для формирования «квазилинейного» сигнала треугольной формы требуются квадратурные гармонические сигналы, что в условиях перестройки частоты в широких пределах также вызывает определенные трудности.

Известно устройство [Титце У., Шенк К. Полупроводниковая схемотехника: Справочное руководство. - М.: Мир, 1982, с. 307, рис. 18.25], содержащее генератор сигналов треугольной формы, первый выход которого подключен к выходному зажиму релейной функции, а второй выход - к выходному зажиму линейной функции и к входу функционального преобразователя, выход которого соединен с выходным зажимом синусоидальной функции. В современных функциональных генераторах для формирования гармонического сигнала из сигнала треугольной формы наибольшее распространение получили диодные функциональные преобразователи, а также преобразователи с использованием ВАХ полевых транзисторов, в основе которых лежит принцип кусочно-линейной, либо кусочно-нелинейной аппроксимации напряжения синусоидальной формы. Однако весь спектр основных требований (малый коэффициент гармоник, отсутствие постоянной составляющей в сигнале синусоидальной формы, широкий диапазон рабочих частот, низкая точность воспроизведения функции синуса при изменении температуры и питающих напряжений и т.д.) достаточно сложно обеспечить при использовании подобных функциональных преобразователей [Дубровин В.С., Никулин В.В. Способ построения управляемых функциональных генераторов. T-comm, 2013, с. 22].

Наиболее близким устройством к заявленному изобретению по совокупности существенных признаков является принятый за прототип управляемый генератор [Пат. №2506692 Российская Федерация, МПК7 Н03В 27/00. Управляемый генератор / Дубровин B.C., заявитель и патентообладатель Дубровин Виктор Степанович. - №2012137334/08; заявл. 31.08.12; опубл. 10.02.14, Бюл. №4], который содержит два перемножителя, два интегратора, релейный элемент, сумматор и блок управления, при этом выход первого интегратора соединен с первым входом второго перемножителя, входом релейного элемента, первым входом блока управления и первым выходом управляемого генератора, выход второго интегратора соединен со вторым выходом управляемого генератора, вторым входом блока управления и вторым входом сумматора, к выходу которого подключен первый вход первого перемножителя, второй вход которого соединен с управляющей шиной управляемого генератора и вторым входом второго перемножителя, причем выходы первого и второго перемножителей соединены соответственно с входами первого и второго интеграторов, третий и четвертый входы блока управления соединены соответственно с выходом релейного элемента и шиной опорного напряжения, а выход блока управления соединен с первым входом сумматора.

Блок управления выполнен из трех квадраторов, сумматора, умножителя, ограничителя и инвертора, при этом первый, второй и третий входы сумматора соединены, соответственно, с выходами первого, второго квадраторов и с выходом инвертора, вход которого соединен с выходом третьего квадратора, причем первый, второй и третий входы блока управления соединены соответственно с входами первого, второго и третьего квадраторов, четвертый вход блока управления соединен со вторым входом перемножителя, первый вход которого соединен с выходом сумматора, между выходом которого и выходом блока управления включен ограничитель.

Устройство предназначено для формирования квадратурных гармонических сигналов.

Задачей, на решение которой направлено изобретение, является расширение функциональных возможностей устройства и получение на его выходах квадратурных гармонических сигналов, а также квадратурных биполярных сигналов прямоугольной и треугольной формы с высокими метрологическими характеристиками при изменении частоты в широких пределах.

Технический результат, достигаемый при осуществлении изобретения, заключается в расширении функциональных возможностей предлагаемого устройства за счет введения третьего и четвертого сумматоров, второго релейного элемента, четвертого квадратора и четвертого перемножителя и организации новых связей между элементами, что позволило получить на его выходах квадратурные гармонические сигналы, а также квадратурные биполярные сигналы прямоугольной и треугольной формы с высокими метрологическими характеристиками при изменении частоты в широких пределах.

Указанный технический результат при осуществлении изобретения достигается тем, что в функциональный генератор квадратурных сигналов, содержащий три перемножителя, два интегратора, три квадратора, два сумматора и релейный элемент, выход которого соединен со вторым входом третьего перемножителя, первый вход которого подключен к выходу второго сумматора, первый вход которого соединен с выходом первого квадратора, вход которого соединен с выходом первого интегратора, вход которого подключен к выходу первого перемножителя, второй вход которого соединен с шиной управления и вторым входом второго перемножителя, к выходу которого подключен вход второго интегратора, при этом выход второго квадратора соединен со вторым входом второго сумматора, третий вход которого соединен с шиной опорного напряжения, причем первый, второй и третий выходы функционального генератора соединены с выходами соответственно первого интегратора, релейного элемента и третьего перемножителя, дополнительно введены третий и четвертый сумматоры, второй релейный элемент, четвертый квадратор и четвертый перемножитель, первый вход которого подключен к выходу четвертого сумматора, третий вход которого соединен с шиной опорного напряжения, а первый вход - с выходом третьего квадратора, между выходом которого и вторым входом четвертого сумматора включен четвертый квадратор, при этом выход второго интегратора соединен с входом третьего квадратора и вторым входом третьего сумматора, третий вход которого соединен с первым входом второго перемножителя, вторым входом четвертого перемножителя и выходом второго релейного элемента, вход которого подключен к выходу третьего сумматора, первый вход которого соединен с выходом первого интегратора и первым входом первого сумматора, к выходу которого подключен вход релейного элемента, выход которого соединен со вторым входом первого сумматора и первым входом первого умножителя, причем вход второго квадратора подключен к выходу первого квадратора, а четвертый, пятый и шестой выходы функционального генератора квадратурных сигналов соединены с выходами соответственно четвертого перемножителя, второго релейного элемента и второго интегратора.

Проведенный заявителем анализ уровня техники, включающий поиск по патентным и научно-техническим источникам информации, позволил установить, что заявитель не обнаружил аналог, характеризующийся признаками, тождественными всем существенным признакам заявленного изобретения. Следовательно, заявляемое изобретение соответствует условию «новизна».

Введение в предлагаемое устройство третьего и четвертого сумматоров, второго релейного элемента, четвертого квадратора и четвертого перемножителя, а также организация новых связей между элементами позволили получить на его выходах квадратурные гармонические сигналы, а также квадратурные биполярные сигналы прямоугольной и треугольной формы с высокими метрологическими характеристиками при изменении частоты в широких пределах.

Изобретение поясняется структурной схемой функционального генератора квадратурных сигналов (фиг. 1) и графиками (фиг. 2 - фиг. 4), поясняющими принцип работы функционального генератора квадратурных сигналов.

Функциональный генератор квадратурных сигналов (фиг. 1) содержит четыре перемножителя (1-3, 16), два интегратора (4, 5), четыре квадратора (6-8, 15), четыре сумматора (9, 10, 12, 13) и два релейных элемента (11, 14), при этом первый релейный элемент 11 включен между выходом первого сумматора 11 и первым входом первого перемножителя 1, между выходом которого и входом первого квадратора 6 включен первый интегратор 4, выход которого соединен с первым входом первого сумматора 9 и первым входом второго сумматора 12, между выходом которого и первым входом второго перемножителя 2 включен второй релейный элемент 14, выход которого соединен с третьим входом первого сумматора 12, второй вход которого подключен к выходу второго интегратора 5, между выходом которого и входом четвертого квадратора 15 включен третий квадратор 8, выход которого соединен с первым входом четвертого сумматора 13, третий вход которого соединен с шиной эталонного напряжения и третьим входом второго сумматора 10, первый вход которого соединен с выходом первого квадратора 6, между выходом которого и вторым входом второго сумматора 10 включен второй квадратор 7, причем к выходу второго сумматора 10 подключен первый вход третьего перемножителя 3, второй вход которого соединен со вторым входом первого сумматора 9 и первым входом первого перемножителя 1, второй вход которого соединен с шиной управления и вторым входом второго перемножителя 2, к выходу которого подключен вход второго интегратора 5, выход которого соединен с шестым выходом функционального генератора квадратурных сигналов, пятый выход которого соединен с выходом второго релейного элемента 14 и вторым входом четвертого перемножителя 16, первый вход которого подключен к выходу четвертого сумматора 13, второй вход которого соединен с выходом четвертого квадратора 15, а первый, второй, третий и четвертый выходы функционального генератора квадратурных сигналов соединены с выходами соответственно первого интегратора 4, первого релейного элемента 11, третьего перемножителя 3 и четвертого перемножителя 16.

Функциональный генератор квадратурных сигналов работает следующим образом.

Перемножители 1 и 2, интеграторы 4 и 5, релейные элементы 11 и 14, а также сумматоры 9 и 10 образуют (фиг. 1) управляемый генератор квадратурных сигналов треугольной формы и биполярных сигналов прямоугольной формы.

Перемножитель 1 и инвертирующий интегратор 4 образуют управляемый интегратор, передаточная функция которого (в изображениях по Лапласу) имеет значение:

где s - комплексная переменная; Еу - управляющее напряжение; τ1 - постоянная времени первого интегратора 4; m1 - масштабный коэффициент перемножителя 1; τу11у - управляемая постоянная времени.

Перемножитель 2 и инвертирующий интегратор 5 образуют второй управляемый интегратор, передаточная функция которого имеет значение:

где s - комплексная переменная; τ2 - постоянная времени второго интегратора 5; m2 - масштабный коэффициент второго перемножителя 2; τУ22у - управляемая постоянная времени второго управляемого интегратора.

При τ12=τ; m1=m2=m=1 передаточные функции управляемых интеграторов также будут иметь одинаковые значения:

где.

В установившемся режиме (фиг. 2) на выходах первого 11 и второго 14 инвертирующих релейных элементов формируются соответствующие биполярные сигналы прямоугольной формы D1(t) и D2(t), которые поступают на входы соответствующих управляемых интеграторов.

На выходе первого управляемого интегратора формируется (фиг. 2) сигнал треугольной формы L1(t), а на выходе второго управляемого интегратора - аналогичный сигнал L2(t), сдвинутый по отношению к первому на 90 электрических градусов.

Первый 9 и второй 10 сумматоры обеспечивают (фиг. 2) формирование сигналов V1(t) и V2(t), поступающих на входы соответствующих релейных элементов 11 и 14, которые обеспечивают стабильные амплитудные значения сигналов прямоугольной и треугольной формы.

Амплитудные значения Dm1 и Dm2 (фиг. 2) соответствующих сигналов 2), (0 и D2(t) определяются значениями напряжений ограничения U01 и U02 соответствующих релейных элементов 11 и 14.

При равенстве U01=U02=U0 частота f формируемых сигналов треугольной и прямоугольной формы определяется следующим выражением:

откуда следует, что частота f формируемых сигналов будет линейно зависеть от изменения управляющего напряжения Еу.

Квадраторы 6 и 7, сумматор 10 и перемножитель 3 образуют (фиг. 1) первый формирователь гармонического сигнала, а квадраторы 8 и 15, сумматор 13 и перемножитель 16 - второй формирователь гармонического сигнала. Сигналы N1(t) и N2(t) поступают соответственно на третий и четвертый выходы функционального генератора.

Рассмотрим процесс формирования гармонических сигналов на примере второго формирователя (фиг. 3,б), поскольку процесс формирования гармонического сигнала N1(t) в первом формирователе будет происходить аналогичным образом.

Для нахождения аналитических выражений сигнала L2(t) используем общее выражение для прямой у=kx+b, проходящей через две точки с координатами (x1,y1) и (х22):

где х - текущее значение угла в радианах.

Подставив в (1) координаты двух граничных точек [x1=0, у1=-А; х2=π, у2=А] для первого участка сигнала L2(t), получим:

Подставив в (1) координаты двух других граничных точек [x1=π, у1=А; х2=2π, у2=-А] для второго участка сигнала L2(t), получим:

Для упрощения рассуждений примем, что амплитудные значения сигнала L2(t) равны нормированному значению А=А*=1. В этом случае:

Рассмотрим работу формирователя гармонического сигнала на первом участке при x∈[π;2π]. На выходе третьего 8 и четвертого 15 квадраторов формируются (фиг. 3,б) соответствующие сигналы:

Сумматор 13 является инвертирующим, поэтому на его выходе будет сформирован сигнал:

где k41, k42 и k43 - коэффициенты передачи сумматора 13 по соответствующим входам, Е0 - величина опорного напряжения.

При k43=1, Е0=1 и с учетом (5) получим:

При х=0 и x=π (фиг. 3,б):

Из уравнения (7) найдем зависимость между коэффициентами k41 и k42:

Подставив значение коэффициента k42 из уравнения (8) в уравнение (6), получим:

Максимальное (экстремальное) значение М2 max будет (фиг. 4,г) при х=π/2:

Аналогичные результаты могут быть получены и для второго участка, при этом М2(π)=М2(2π)=0,а М2 max2(3π/2)=А*=1.

Анализ кривой М2(х) показывает, что сигнал по форме близок к синусоиде, поэтому для оценки погрешности ε(x) найдем разность между сигналом М2(х) и М0(х) для идеальной синусоиды:

причем, как следует из (9), величина погрешности будет зависеть от значения коэффициента k41.

Минимизация ошибки s(x) происходит при значении коэффициента k41≈1,2232, при этом коэффициент k42≈0,2232.

Формирование гармонического сигнала N2(x) происходит с помощью фазового модулятора, выполненного из перемножителя 16, на первый вход которого поступает (фиг. 4,г) однополярный сигнал М2(х), а на другой (фиг. 4,д) - управляющий сигнал D2(x) с выхода второго релейного элемента 14.

Таким образом, на выходе перемножителя 16 формируется гармонический сигнал N2(t), коэффициент искажения которого не превышает 0,072% при оптимальных значениях коэффициентов k41opt=1,2232 и k42opt=0,2232. Оптимизация коэффициентов и измерение нелинейных искажений производились с помощью блока (THD-Total harmonic distortion) программы PSIM 9.

Использование предлагаемого изобретения позволит расширить функциональные возможности устройства и получить на его выходах квадратурные гармонические сигналы, а также квадратурные биполярные сигналы прямоугольной и треугольной формы с высокими метрологическими характеристиками при изменении частоты в широких пределах.

Похожие патенты RU2582556C1

название год авторы номер документа
ФУНКЦИОНАЛЬНЫЙ ГЕНЕРАТОР 2015
  • Дубровин Виктор Степанович
  • Зюзин Алексей Михайлович
RU2582557C1
ФУНКЦИОНАЛЬНЫЙ ГЕНЕРАТОР 2013
  • Дубровин Виктор Степанович
  • Зюзин Алексей Михайлович
RU2541147C1
Функциональный генератор 2016
  • Дубровин Виктор Степанович
  • Зюзин Алексей Михайлович
RU2625555C1
ФОРМИРОВАТЕЛЬ ГАРМОНИЧЕСКОГО СИГНАЛА 2015
  • Дубровин Виктор Степанович
  • Зюзин Алексей Михайлович
RU2577205C1
МНОГОЧАСТОТНЫЙ ФУНКЦИОНАЛЬНЫЙ ГЕНЕРАТОР 2013
  • Дубровин Виктор Степанович
  • Зюзин Алексей Михайлович
RU2534938C1
ФУНКЦИОНАЛЬНЫЙ ГЕНЕРАТОР 2013
  • Дубровин Виктор Степанович
  • Зюзин Алексей Михайлович
RU2534939C1
УПРАВЛЯЕМЫЙ ГЕНЕРАТОР КВАДРАТУРНЫХ СИГНАЛОВ 2014
  • Дубровин Виктор Степанович
  • Зюзин Алексей Михайлович
RU2551824C1
УПРАВЛЯЕМЫЙ ГЕНЕРАТОР 2012
  • Дубровин Виктор Степанович
RU2506692C1
УПРАВЛЯЕМЫЙ ГЕНЕРАТОР КВАДРАТУРНЫХ СИГНАЛОВ 2014
  • Дубровин Виктор Степанович
  • Зюзин Алексей Михайлович
RU2565362C1
ФУНКЦИОНАЛЬНЫЙ ГЕНЕРАТОР 2014
  • Дубровин Виктор Степанович
  • Зюзин Алексей Михайлович
RU2554571C1

Иллюстрации к изобретению RU 2 582 556 C1

Реферат патента 2016 года ФУНКЦИОНАЛЬНЫЙ ГЕНЕРАТОР КВАДРАТУРНЫХ СИГНАЛОВ

Изобретение относится к области электроники и может быть использовано в измерительной технике и автоматике. Техническим результатом является расширение функциональных возможностей устройства за счет получения на его выходах квадратурных гармонических сигналов, а также квадратурных биполярных сигналов прямоугольной и треугольной формы с высокими метрологическими характеристиками при изменении частоты в широких пределах. Функциональный генератор содержит: три перемножителя (1-3), два интегратора (4, 5), три квадратора (6-8), два сумматора (9, 10) и релейный элемент 11, третий 12 и четвертый 13 сумматоры, второй релейный элемент 14, четвертый квадратор 15 и четвертый перемножитель 16. 4 ил.

Формула изобретения RU 2 582 556 C1

Функциональный генератор квадратурных сигналов, содержащий три перемножителя, два интегратора, три квадратора, два сумматора и релейный элемент, выход которого соединен со вторым входом третьего перемножителя, первый вход которого подключен к выходу второго сумматора, первый вход которого соединен с выходом первого квадратора, вход которого соединен с выходом первого интегратора, вход которого подключен к выходу первого перемножителя, второй вход которого соединен с шиной управления и вторым входом второго перемножителя, к выходу которого подключен вход второго интегратора, при этом выход второго квадратора соединен со вторым входом второго сумматора, третий вход которого соединен с шиной опорного напряжения, причем первый, второй и третий выходы функционального генератора соединены с выходами соответственно первого интегратора, релейного элемента и третьего перемножителя, отличающийся тем, что в него дополнительно введены третий и четвертый сумматоры, второй релейный элемент, четвертый квадратор и четвертый перемножитель, первый вход которого подключен к выходу четвертого сумматора, третий вход которого соединен с шиной опорного напряжения, а первый вход - с выходом третьего квадратора, между выходом которого и вторым входом четвертого сумматора включен четвертый квадратор, при этом выход второго интегратора соединен с входом третьего квадратора и вторым входом третьего сумматора, третий вход которого соединен с первым входом второго перемножителя, вторым входом четвертого перемножителя и выходом второго релейного элемента, вход которого подключен к выходу третьего сумматора, первый вход которого соединен с выходом первого интегратора и первым входом первого сумматора, к выходу которого подключен вход релейного элемента, выход которого соединен со вторым входом первого сумматора и первым входом первого умножителя, причем вход второго квадратора подключен к выходу первого квадратора, а четвертый, пятый и шестой выходы функционального генератора квадратурных сигналов соединены с выходами соответственно четвертого перемножителя, второго релейного элемента и второго интегратора.

Документы, цитированные в отчете о поиске Патент 2016 года RU2582556C1

УПРАВЛЯЕМЫЙ ГЕНЕРАТОР 2012
  • Дубровин Виктор Степанович
RU2506692C1
ФУНКЦИОНАЛЬНЫЙ ГЕНЕРАТОР 2013
  • Дубровин Виктор Степанович
  • Зюзин Алексей Михайлович
RU2534939C1
Станок с программным управлением для обработки тел вращения с изогнутой осью симметрии 1959
  • Вишневский А.Л.
SU127554A1
Резец для токарной обработки наружных торцовых конических поверхностей 1956
  • Баев К.М.
SU108247A1
Клапанное запорное устройство 1988
  • Рогов Владимир Федорович
  • Макин Геннадий Иванович
  • Старожук Сергей Иванович
SU1657815A1

RU 2 582 556 C1

Авторы

Дубровин Виктор Степанович

Зюзин Алексей Михайлович

Даты

2016-04-27Публикация

2015-01-12Подача