СПОСОБ ПОЛУЧЕНИЯ ГАЛЛИЯ ВЫСОКОЙ ЧИСТОТЫ Российский патент 2016 года по МПК C22B58/00 C22B9/04 

Описание патента на изобретение RU2583574C1

Изобретение относится к технологии редких и рассеянных элементов и может быть использовано при получении галлия высокой чистоты.

При использовании галлия для синтеза соединений, применяемых в электронной промышленности, предъявляются высокие требования к чистоте материала. Чистота металлического галлия определяется по содержанию галлия. Для электронной промышленности требуется галлий с содержанием галлия не менее 99,9999% по массе. Чистота галлия напрямую влияет на свойства синтезируемых соединений.

Известны различные способы получения галлия высокой чистоты, включающие химические, электрохимические, кристаллофизические и вакуум-термические методы очистки.

Так, например, известен способ получения галлия высокой чистоты, включающий промывку металла чистой кислотой (марка ХЧ) и дважды перегнанной водой, электролитическое рафинирование в растворе галлата, зонную плавку металла, образование пленки окислов с последующей фильтрацией и, наконец, длительное вакуумирование при температуре 900°С и вакууме 10-5 мм рт.ст (см. «Химия и технология редких и рассеянных элементов», ч. 1. Под ред. К.А. Большакова. Учеб. Пособие для вузов. Изд. 2-е, перераб. и доп. - М.: Высшая школа, 1976 г.).

Недостатком способа является его многостадийность, использование агрессивных сред.

Известен способ получения индия и галлия высокой чистоты методом электропереноса в магнитном поле. Метод основан на электропереносе в жидких металлах, помещенных в поперечное постоянное магнитное поле, получены индий и галлий высокой чистоты (7N). Определены значения относительного остаточного сопротивления (интегральной характеристики чистоты материалов) полученных индия (25000 отн. ед.) и галлия (85000 отн. ед.) и проведено их сравнение с другими марками этих металлов. Разработан способ эффективной финишной очистки высокочистых материалов для микро- и наноэлектроники с помощью поперечного электропереноса в магнитном поле (Preparation of high-purity indium and gallium via electrotransfer in a magnetic field. Trunin E.B., Trunina O.E. Inorganic Materials. 2003. T. 39. №8. C. 798-801).

Недостатками способа являются невозможность использования в качестве исходного металла галлия марки чистотой 99,99% по массе и более грязного, низкая производительность.

Известен способ получения индия высокой чистоты, включающий вакуум-термическую обработку индия. При этом вакуум-термическую обработку проводят в две стадии. На первой стадии ее проводят при температуре 1000-1350°С, получают три конденсированные фракции, одна из которых обогащена труднолетучими примесями, другая содержит сконденсированные возгоны, обогащенные легколетучими примесями, а третья очищена от труднолетучих и легколетучих примесей. Третью фракцию направляют на вторую стадию вакуум-термической обработки, которую осуществляют при температуре 1100-1200°С и на которой металлический индий очищают от примесей со средней степенью летучести. Техническим результатом является получение продукта, содержащего индия не менее 99,9999% мас.

Данный способ не позволяет очистить металлический галлий от трудноудаляемых примесей и получить галлий высокой чистоты.

Известен способ рафинирования цветных металлов, который осуществляют в аппарате для разделения галлия и мышьяка при очистке вторичного сырья. При этом в аппарате нагреватель выполнен цилиндрическим в виде стакана с нижним токовводом, в полости которого размещены на подставке колонка испарительных тарелей, разделенная конфузорной тарелью на две секции, а сверху испарительные тарели накрыты водоохлаждаемым конденсатором. Более летучие примеси (мышьяк) по отношению к галлию возгоняются и конденсируются на водоохлаждаемом конденсаторе. Очищенный металлический галлий остается в кубовом остатке. Технический результат: предлагаемый аппарат позволяет перерабатывать твердые кусковые материалы с высокой селективностью разделения галлия и мышьяка, мышьяк выделяется в компактном металлическом безопасном виде на легкосъемном конденсаторе (Патент РФ №2160788 от 20.12.2000 г.). Способ позволяет очищать галлий от мышьяка, но не обеспечивает получение галлия высокой чистоты.

Известен способ получения высокочистого галлия марки 6N, включающий операции нитрирования, окисления, экстракции примесей металлами и неорганическими растворителями, кристаллизационной очистки, нагревания в вакууме, электролиз. Нагревание в вакууме осуществляют при температуре 600-1050°С для удаления примесей ртути, цинка, магния, кальция, меди, свинца. Для кристаллизационной очистки используют направленную кристаллизацию, зонную плавку и выращивание слитков по методу Чохральского. Технологические операции позволяют получать галлий марки Гл000. При заключительной операции выращивания слитков по методу Чохральского чистота галлия не менее чем на порядок снижается по сравнению с маркой Гл000. («Химия и технология галлия». Иванова Р.В. - М.: Металлургия, 1973 г., стр. 327-368). Недостатком этого процесса является многостадийность, низкая производительность процесса выращивания монокристалла галлия.

Способ принят за прототип.

Техническим результатом заявленного изобретения является получение металлического галлия с содержанием галлия не менее 99,99999% по массе.

Технический результат достигается тем, что в способе получения галлия высокой чистоты, включающем кристаллизационную очистку технического галлия, согласно изобретению перед кристаллизационной очисткой галлий подвергают вакуум-термической обработке в вакуумной камере с размещением в ней графитовых тиглей, соосно расположенных один над другим, причем тигли, расположенные над нижним тиглем, выполнены с цилиндрическим выступом в центре дна тиглей и с отверстиями по периметру на боковой поверхности, а технический галлий загружают в нижний тигель, камеру вакуумируют до 1·10-3÷1·10-5 мм рт.ст., нагревают до температуры 1400-1500°C в области нижнего тигля и поддерживают данную температуру в течение 2-6 часов, при этом галлий после вакуум-термической обработки подвергают трехкратной кристаллизационной очистке методом направленной кристаллизации при скорости роста кристалла 1 см/час, и в вакуумной камере установлены один над другим четыре тигля.

Сущность способа заключается в следующем. Металлический галлий чистотой 99,99% по массе перед кристаллизационной очисткой подвергают вакуум-термической обработке при температуре 1400-1500°C в вакууме 1·(10-3-10-5) мм рт.ст. На стадии вакуум-термической обработки галлий очищается от большинства присутствующих примесей (Pb, Sb, Tl, Bi, Ni, Mg, Zn, Cd, As, Bi, Sb, S, Se, Cu, Sn). Очищенный вакуум-термической обработкой галлий подвергают трехкратной кристаллизационной очистке методом направленной кристаллизации при скорости роста кристалла 1 см/час. Проведение операций вакуумной и кристаллизационной очистки галлия обеспечивает получение высокочистого галлия с содержанием галлия не ниже 99,99999% по весу.

Обоснование заявленных параметров процесса.

Проведение термообработки галлия при температуре ниже 1400°С не позволяет отделить труднолетучие примеси от основной массы очищаемого галлия из-за низкой летучести Cu, Sn, Pb.

Увеличение температуры выше 1500°С приводит к снижению производительности процесса за счет конденсирования части галлия с примесями.

Проведение термообработки галлия при вакууме ниже 1×10-3 и продолжительности процесса менее 2 часов не обеспечивает глубокого удаления примесей.

Проведение термообработки галлия при вакууме выше 1×10-5 и продолжительности процесса более 6 часов не оказывает существенного влияния на глубину очистки.

Использование менее четырех тиглей для термообработки галлия приводит к потерям галлия за счет улетучивания из тиглей.

Использование более четырех тиглей для термообработки галлия необоснованно увеличивает размеры вакуум-термической камеры.

На рисунке 1 схематически изображено устройство для вакуум-термической обработки галлия.

Устройство включает: вакуумную камеру 1, нижний графитовый тигель с загрузкой 2, верхние графитовые тигли 3 и нагреватель 4, установленный под нижним тиглем.

На рисунке 2 схематически изображен верхний тигель, в центре дна которого выполнен цилиндрический выступ, на боковой поверхности выступа по периметру выполнены отверстия (разрез тигля по оси).

Примеры осуществления способа.

Пример №1.

Вакуум-термическую очистку галлия проводили в вакуумной камере в установленных в ней четырех графитовых тиглях, соосно расположенных друг над другом. Пять килограммов галлия с содержанием галлия 99,99% по массе загружали в нижний тигель 2, помещали в вакуумную камеру 1, устанавливали над нижним тиглем соосно ему еще три графитовых тигля 3 и откачивали вакуумную камеру до степени 5×10-3 мм рт. ст. Температуру в зоне нижнего тигля 2 поднимали до 1400°С. Процесс вакуум-термической обработки проводили в течение 2 часов. После охлаждения сконденсированный материал, обогащенный примесями, из верхних тиглей 3 в количестве 67 граммов отделяли, а очищенный металл из нижнего тигля 2 подвергали трехкратной кристаллизационной очистке в кристаллизаторе из титана при скорости роста кристалла 1 см/час. После кристаллизации 90% металлического галлия обогащенную примесями жидкую фазу сливали, а очищенный галлий расплавляли и проводили повторную кристаллизацию. После третьей кристаллизации от очищенного галлия отбирали пробу и анализировали. Содержание галлия в металле после очистки не менее 99,99999% по массе.

Пример №2.

Тринадцать килограммов галлия с содержанием галлия 99,99% по массе загружали в тигель №1 и откачивали вакуум до степени 5×10-5 мм рт. ст. Температуру в зоне тигля №1 поднимали до 1500°С. Процесс вакуум-термической обработки проводили в течение 6 часов. После охлаждения сконденсированный материал, обогащенный примесями из тиглей №2-4, в количестве 213 граммов отделяли, а очищенный металл из нижнего тигля подвергали трехкратной кристаллизационной очистке при скорости роста кристалла 1 см/час. После кристаллизации 90% металлического галлия обогащенную примесями жидкую фазу сливали, а очищенный галлий расплавляли и проводили повторную кристаллизацию. После третьей кристаллизации от очищенного галлия отбирали пробу и анализировали. Содержание галлия в металле после очистки не менее 99,99999% по массе.

Из приведенных данных видно, что использование предлагаемого способа по сравнению с известным позволяет получать металлический галлий с содержанием галлия не менее 99,99999% по массе.

Похожие патенты RU2583574C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ ИНДИЯ ВЫСОКОЙ ЧИСТОТЫ 2012
  • Гасанов Ахмедали Амералы Оглы
  • Кознов Георгий Георгиевич
  • Почтарёв Александр Николаевич
  • Аникин Олег Викторович
RU2507283C1
СПОСОБ ВАКУУМНОЙ ОЧИСТКИ КРЕМНИЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2009
  • Кравцов Анатолий Александрович
RU2403300C1
НЕ ЗАГРЯЗНЯЮЩИЙ ОКРУЖАЮЩУЮ СРЕДУ СПОСОБ ВАКУУМНОЙ ЭКСТРАКЦИИ МЫШЬЯКА И ОБОРУДОВАНИЕ ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2003
  • Люо Веньжу
RU2293130C2
СПОСОБ ЭКСТРАКЦИИ ЗОЛОТА ИЗ СОДЕРЖАЩЕГО МЫШЬЯК И ЗОЛОТО КОНЦЕНТРАТА И ОБОРУДОВАНИЕ ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2003
  • Люо Веньжу
RU2293127C2
СПОСОБ ВАКУУМНОЙ ОЧИСТКИ КРЕМНИЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ (ВАРИАНТЫ) 2009
  • Кравцов Анатолий Александрович
RU2403299C1
СПОСОБ РАФИНИРОВАНИЯ МЕТАЛЛУРГИЧЕСКОГО КРЕМНИЯ 2011
  • Карабанов Сергей Михайлович
  • Джхунян Валерий Леонидович
  • Ясевич Виктор Игоревич
  • Масахиро Хосино
RU2465200C1
СПОСОБ ВАКУУМНОЙ ОЧИСТКИ КРЕМНИЯ 2008
  • Кравцов Анатолий Александрович
RU2381990C1
СПОСОБ ПЕРЕРАБОТКИ ГАЛЛИЙМЫШЬЯКСОДЕРЖАЩИХ ОТХОДОВ 1995
  • Абрютин В.Н.
  • Калашник О.Н.
RU2078842C1
СПОСОБ ПОЛУЧЕНИЯ СЛИТКОВ ПОЛИКРИСТАЛЛИЧЕСКОГО КРЕМНИЯ 2011
  • Карабанов Сергей Михайлович
  • Джхунян Валерий Леонидович
  • Ясевич Виктор Игоревич
  • Масахиро Хосино
RU2465201C1
СПОСОБ ВЫПЛАВКИ ЖАРОПРОЧНЫХ СПЛАВОВ НА МЕДНОЙ ОСНОВЕ 2023
  • Шильников Евгений Владимирович
  • Кабанов Илья Викторович
  • Шильников Александр Евгеньевич
  • Муруев Станислав Владимирович
  • Троянов Борис Владимирович
  • Степанов Владимир Викторович
RU2807237C1

Иллюстрации к изобретению RU 2 583 574 C1

Реферат патента 2016 года СПОСОБ ПОЛУЧЕНИЯ ГАЛЛИЯ ВЫСОКОЙ ЧИСТОТЫ

Изобретение относится к технологии редких и рассеянных элементов и может быть использовано при получении галлия высокой чистоты. Технический галлий подвергают вакуум-термической обработке в вакуумной камере с размещенными в ней графитовыми тиглями, соосно расположенными один над другим. В центре дна тиглей, расположенных над нижним тиглем, выполнен цилиндрический выступ, на боковой поверхности которого по периметру выполнены отверстия. Технический галлий загружают в нижний тигель, камеру вакуумируют до 1·10-3-1·10-5 мм рт.ст., нагревают до температуры 1400-1500°С в области нижнего тигля и поддерживают данную температуру в течение 2-6 часов. Галлий после вакуум-термической обработки подвергают трехкратной кристаллизационной очистке методом направленной кристаллизации при скорости роста кристалла 1 см/час. Техническим результатом является получение металлического галлия с содержанием галлия не менее 99,99999% по массе. 1 з.п. ф-лы, 2 ил., 2 пр.

Формула изобретения RU 2 583 574 C1

1. Способ получения галлия высокой чистоты, включающий кристаллизационную очистку технического галлия, отличающийся тем, что перед кристаллизационной очисткой технический галлий подвергают вакуум-термической обработке в вакуумной камере с размещением в ней графитовых тиглей, соосно расположенных один над другим, причем тигли, расположенные над нижним тиглем, выполнены с цилиндрическим выступом в центре дна тиглей и с отверстиями по его периметру на боковой поверхности, технический галлий загружают в нижний тигель, камеру вакуумируют до 1·10-3÷1·10-5 мм рт.ст., нагревают ее до температуры 1400-1500°C в области нижнего тигля и поддерживают данную температуру в течение 2-6 часов, при этом галлий после вакуум-термической обработки подвергают трехкратной кристаллизационной очистке методом направленной кристаллизации при скорости роста кристалла 1 см/час.

2. Способ по п. 1, отличающийся тем, что в вакуумной камере устанавливают четыре тигля.

Документы, цитированные в отчете о поиске Патент 2016 года RU2583574C1

ИВАНОВА Р.В
Химия и технология галлия, М., Металлургия, 1973, с.327-337
ВАКУУМНЫЙ АППАРАТ 1996
  • Дьяков В.Е.
  • Рубан А.А.
  • Дугельный А.П.
  • Бельский А.А.
  • Фомин С.С.
RU2160788C2
СПОСОБ ПОЛУЧЕНИЯ ГАЛЛИЯ ВЫСОКОЙ ЧИСТОТЫ 2002
  • Козлов С.А.
  • Потолоков Н.А.
  • Сажин М.В.
RU2224038C2
WO 00/26422 А1, 11.05.2000
GB 1452230 А, 13.10.1976
US 5458669 А, 17.10.1995.

RU 2 583 574 C1

Авторы

Гасанов Ахмедали Амиралы Оглы

Горбачёва Надежда Семёновна

Калимулин Виктор Саввич

Кознов Георгий Георгиевич

Почтарёв Александр Николаевич

Рыцарев Владимир Викторович

Синицын Андрей Борисович

Даты

2016-05-10Публикация

2014-12-11Подача