Изобретение относится к технологии редких и рассеянных элементов и может быть использовано при получении галлия высокой чистоты.
При использовании галлия для синтеза соединений, применяемых в электронной промышленности, предъявляются высокие требования к чистоте материала. Чистота металлического галлия определяется по содержанию галлия. Для электронной промышленности требуется галлий с содержанием галлия не менее 99,9999% по массе. Чистота галлия напрямую влияет на свойства синтезируемых соединений.
Известны различные способы получения галлия высокой чистоты, включающие химические, электрохимические, кристаллофизические и вакуум-термические методы очистки.
Так, например, известен способ получения галлия высокой чистоты, включающий промывку металла чистой кислотой (марка ХЧ) и дважды перегнанной водой, электролитическое рафинирование в растворе галлата, зонную плавку металла, образование пленки окислов с последующей фильтрацией и, наконец, длительное вакуумирование при температуре 900°С и вакууме 10-5 мм рт.ст (см. «Химия и технология редких и рассеянных элементов», ч. 1. Под ред. К.А. Большакова. Учеб. Пособие для вузов. Изд. 2-е, перераб. и доп. - М.: Высшая школа, 1976 г.).
Недостатком способа является его многостадийность, использование агрессивных сред.
Известен способ получения индия и галлия высокой чистоты методом электропереноса в магнитном поле. Метод основан на электропереносе в жидких металлах, помещенных в поперечное постоянное магнитное поле, получены индий и галлий высокой чистоты (7N). Определены значения относительного остаточного сопротивления (интегральной характеристики чистоты материалов) полученных индия (25000 отн. ед.) и галлия (85000 отн. ед.) и проведено их сравнение с другими марками этих металлов. Разработан способ эффективной финишной очистки высокочистых материалов для микро- и наноэлектроники с помощью поперечного электропереноса в магнитном поле (Preparation of high-purity indium and gallium via electrotransfer in a magnetic field. Trunin E.B., Trunina O.E. Inorganic Materials. 2003. T. 39. №8. C. 798-801).
Недостатками способа являются невозможность использования в качестве исходного металла галлия марки чистотой 99,99% по массе и более грязного, низкая производительность.
Известен способ получения индия высокой чистоты, включающий вакуум-термическую обработку индия. При этом вакуум-термическую обработку проводят в две стадии. На первой стадии ее проводят при температуре 1000-1350°С, получают три конденсированные фракции, одна из которых обогащена труднолетучими примесями, другая содержит сконденсированные возгоны, обогащенные легколетучими примесями, а третья очищена от труднолетучих и легколетучих примесей. Третью фракцию направляют на вторую стадию вакуум-термической обработки, которую осуществляют при температуре 1100-1200°С и на которой металлический индий очищают от примесей со средней степенью летучести. Техническим результатом является получение продукта, содержащего индия не менее 99,9999% мас.
Данный способ не позволяет очистить металлический галлий от трудноудаляемых примесей и получить галлий высокой чистоты.
Известен способ рафинирования цветных металлов, который осуществляют в аппарате для разделения галлия и мышьяка при очистке вторичного сырья. При этом в аппарате нагреватель выполнен цилиндрическим в виде стакана с нижним токовводом, в полости которого размещены на подставке колонка испарительных тарелей, разделенная конфузорной тарелью на две секции, а сверху испарительные тарели накрыты водоохлаждаемым конденсатором. Более летучие примеси (мышьяк) по отношению к галлию возгоняются и конденсируются на водоохлаждаемом конденсаторе. Очищенный металлический галлий остается в кубовом остатке. Технический результат: предлагаемый аппарат позволяет перерабатывать твердые кусковые материалы с высокой селективностью разделения галлия и мышьяка, мышьяк выделяется в компактном металлическом безопасном виде на легкосъемном конденсаторе (Патент РФ №2160788 от 20.12.2000 г.). Способ позволяет очищать галлий от мышьяка, но не обеспечивает получение галлия высокой чистоты.
Известен способ получения высокочистого галлия марки 6N, включающий операции нитрирования, окисления, экстракции примесей металлами и неорганическими растворителями, кристаллизационной очистки, нагревания в вакууме, электролиз. Нагревание в вакууме осуществляют при температуре 600-1050°С для удаления примесей ртути, цинка, магния, кальция, меди, свинца. Для кристаллизационной очистки используют направленную кристаллизацию, зонную плавку и выращивание слитков по методу Чохральского. Технологические операции позволяют получать галлий марки Гл000. При заключительной операции выращивания слитков по методу Чохральского чистота галлия не менее чем на порядок снижается по сравнению с маркой Гл000. («Химия и технология галлия». Иванова Р.В. - М.: Металлургия, 1973 г., стр. 327-368). Недостатком этого процесса является многостадийность, низкая производительность процесса выращивания монокристалла галлия.
Способ принят за прототип.
Техническим результатом заявленного изобретения является получение металлического галлия с содержанием галлия не менее 99,99999% по массе.
Технический результат достигается тем, что в способе получения галлия высокой чистоты, включающем кристаллизационную очистку технического галлия, согласно изобретению перед кристаллизационной очисткой галлий подвергают вакуум-термической обработке в вакуумной камере с размещением в ней графитовых тиглей, соосно расположенных один над другим, причем тигли, расположенные над нижним тиглем, выполнены с цилиндрическим выступом в центре дна тиглей и с отверстиями по периметру на боковой поверхности, а технический галлий загружают в нижний тигель, камеру вакуумируют до 1·10-3÷1·10-5 мм рт.ст., нагревают до температуры 1400-1500°C в области нижнего тигля и поддерживают данную температуру в течение 2-6 часов, при этом галлий после вакуум-термической обработки подвергают трехкратной кристаллизационной очистке методом направленной кристаллизации при скорости роста кристалла 1 см/час, и в вакуумной камере установлены один над другим четыре тигля.
Сущность способа заключается в следующем. Металлический галлий чистотой 99,99% по массе перед кристаллизационной очисткой подвергают вакуум-термической обработке при температуре 1400-1500°C в вакууме 1·(10-3-10-5) мм рт.ст. На стадии вакуум-термической обработки галлий очищается от большинства присутствующих примесей (Pb, Sb, Tl, Bi, Ni, Mg, Zn, Cd, As, Bi, Sb, S, Se, Cu, Sn). Очищенный вакуум-термической обработкой галлий подвергают трехкратной кристаллизационной очистке методом направленной кристаллизации при скорости роста кристалла 1 см/час. Проведение операций вакуумной и кристаллизационной очистки галлия обеспечивает получение высокочистого галлия с содержанием галлия не ниже 99,99999% по весу.
Обоснование заявленных параметров процесса.
Проведение термообработки галлия при температуре ниже 1400°С не позволяет отделить труднолетучие примеси от основной массы очищаемого галлия из-за низкой летучести Cu, Sn, Pb.
Увеличение температуры выше 1500°С приводит к снижению производительности процесса за счет конденсирования части галлия с примесями.
Проведение термообработки галлия при вакууме ниже 1×10-3 и продолжительности процесса менее 2 часов не обеспечивает глубокого удаления примесей.
Проведение термообработки галлия при вакууме выше 1×10-5 и продолжительности процесса более 6 часов не оказывает существенного влияния на глубину очистки.
Использование менее четырех тиглей для термообработки галлия приводит к потерям галлия за счет улетучивания из тиглей.
Использование более четырех тиглей для термообработки галлия необоснованно увеличивает размеры вакуум-термической камеры.
На рисунке 1 схематически изображено устройство для вакуум-термической обработки галлия.
Устройство включает: вакуумную камеру 1, нижний графитовый тигель с загрузкой 2, верхние графитовые тигли 3 и нагреватель 4, установленный под нижним тиглем.
На рисунке 2 схематически изображен верхний тигель, в центре дна которого выполнен цилиндрический выступ, на боковой поверхности выступа по периметру выполнены отверстия (разрез тигля по оси).
Примеры осуществления способа.
Пример №1.
Вакуум-термическую очистку галлия проводили в вакуумной камере в установленных в ней четырех графитовых тиглях, соосно расположенных друг над другом. Пять килограммов галлия с содержанием галлия 99,99% по массе загружали в нижний тигель 2, помещали в вакуумную камеру 1, устанавливали над нижним тиглем соосно ему еще три графитовых тигля 3 и откачивали вакуумную камеру до степени 5×10-3 мм рт. ст. Температуру в зоне нижнего тигля 2 поднимали до 1400°С. Процесс вакуум-термической обработки проводили в течение 2 часов. После охлаждения сконденсированный материал, обогащенный примесями, из верхних тиглей 3 в количестве 67 граммов отделяли, а очищенный металл из нижнего тигля 2 подвергали трехкратной кристаллизационной очистке в кристаллизаторе из титана при скорости роста кристалла 1 см/час. После кристаллизации 90% металлического галлия обогащенную примесями жидкую фазу сливали, а очищенный галлий расплавляли и проводили повторную кристаллизацию. После третьей кристаллизации от очищенного галлия отбирали пробу и анализировали. Содержание галлия в металле после очистки не менее 99,99999% по массе.
Пример №2.
Тринадцать килограммов галлия с содержанием галлия 99,99% по массе загружали в тигель №1 и откачивали вакуум до степени 5×10-5 мм рт. ст. Температуру в зоне тигля №1 поднимали до 1500°С. Процесс вакуум-термической обработки проводили в течение 6 часов. После охлаждения сконденсированный материал, обогащенный примесями из тиглей №2-4, в количестве 213 граммов отделяли, а очищенный металл из нижнего тигля подвергали трехкратной кристаллизационной очистке при скорости роста кристалла 1 см/час. После кристаллизации 90% металлического галлия обогащенную примесями жидкую фазу сливали, а очищенный галлий расплавляли и проводили повторную кристаллизацию. После третьей кристаллизации от очищенного галлия отбирали пробу и анализировали. Содержание галлия в металле после очистки не менее 99,99999% по массе.
Из приведенных данных видно, что использование предлагаемого способа по сравнению с известным позволяет получать металлический галлий с содержанием галлия не менее 99,99999% по массе.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ ИНДИЯ ВЫСОКОЙ ЧИСТОТЫ | 2012 |
|
RU2507283C1 |
СПОСОБ ВАКУУМНОЙ ОЧИСТКИ КРЕМНИЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2009 |
|
RU2403300C1 |
НЕ ЗАГРЯЗНЯЮЩИЙ ОКРУЖАЮЩУЮ СРЕДУ СПОСОБ ВАКУУМНОЙ ЭКСТРАКЦИИ МЫШЬЯКА И ОБОРУДОВАНИЕ ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2003 |
|
RU2293130C2 |
СПОСОБ ЭКСТРАКЦИИ ЗОЛОТА ИЗ СОДЕРЖАЩЕГО МЫШЬЯК И ЗОЛОТО КОНЦЕНТРАТА И ОБОРУДОВАНИЕ ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2003 |
|
RU2293127C2 |
СПОСОБ ВАКУУМНОЙ ОЧИСТКИ КРЕМНИЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ (ВАРИАНТЫ) | 2009 |
|
RU2403299C1 |
СПОСОБ РАФИНИРОВАНИЯ МЕТАЛЛУРГИЧЕСКОГО КРЕМНИЯ | 2011 |
|
RU2465200C1 |
СПОСОБ ВАКУУМНОЙ ОЧИСТКИ КРЕМНИЯ | 2008 |
|
RU2381990C1 |
СПОСОБ ПЕРЕРАБОТКИ ГАЛЛИЙМЫШЬЯКСОДЕРЖАЩИХ ОТХОДОВ | 1995 |
|
RU2078842C1 |
СПОСОБ ПОЛУЧЕНИЯ СЛИТКОВ ПОЛИКРИСТАЛЛИЧЕСКОГО КРЕМНИЯ | 2011 |
|
RU2465201C1 |
СПОСОБ ВЫПЛАВКИ ЖАРОПРОЧНЫХ СПЛАВОВ НА МЕДНОЙ ОСНОВЕ | 2023 |
|
RU2807237C1 |
Изобретение относится к технологии редких и рассеянных элементов и может быть использовано при получении галлия высокой чистоты. Технический галлий подвергают вакуум-термической обработке в вакуумной камере с размещенными в ней графитовыми тиглями, соосно расположенными один над другим. В центре дна тиглей, расположенных над нижним тиглем, выполнен цилиндрический выступ, на боковой поверхности которого по периметру выполнены отверстия. Технический галлий загружают в нижний тигель, камеру вакуумируют до 1·10-3-1·10-5 мм рт.ст., нагревают до температуры 1400-1500°С в области нижнего тигля и поддерживают данную температуру в течение 2-6 часов. Галлий после вакуум-термической обработки подвергают трехкратной кристаллизационной очистке методом направленной кристаллизации при скорости роста кристалла 1 см/час. Техническим результатом является получение металлического галлия с содержанием галлия не менее 99,99999% по массе. 1 з.п. ф-лы, 2 ил., 2 пр.
1. Способ получения галлия высокой чистоты, включающий кристаллизационную очистку технического галлия, отличающийся тем, что перед кристаллизационной очисткой технический галлий подвергают вакуум-термической обработке в вакуумной камере с размещением в ней графитовых тиглей, соосно расположенных один над другим, причем тигли, расположенные над нижним тиглем, выполнены с цилиндрическим выступом в центре дна тиглей и с отверстиями по его периметру на боковой поверхности, технический галлий загружают в нижний тигель, камеру вакуумируют до 1·10-3÷1·10-5 мм рт.ст., нагревают ее до температуры 1400-1500°C в области нижнего тигля и поддерживают данную температуру в течение 2-6 часов, при этом галлий после вакуум-термической обработки подвергают трехкратной кристаллизационной очистке методом направленной кристаллизации при скорости роста кристалла 1 см/час.
2. Способ по п. 1, отличающийся тем, что в вакуумной камере устанавливают четыре тигля.
ИВАНОВА Р.В | |||
Химия и технология галлия, М., Металлургия, 1973, с.327-337 | |||
ВАКУУМНЫЙ АППАРАТ | 1996 |
|
RU2160788C2 |
СПОСОБ ПОЛУЧЕНИЯ ГАЛЛИЯ ВЫСОКОЙ ЧИСТОТЫ | 2002 |
|
RU2224038C2 |
WO 00/26422 А1, 11.05.2000 | |||
GB 1452230 А, 13.10.1976 | |||
US 5458669 А, 17.10.1995. |
Авторы
Даты
2016-05-10—Публикация
2014-12-11—Подача