СПОСОБ ВАКУУМНОЙ ОЧИСТКИ КРЕМНИЯ Российский патент 2010 года по МПК C01B33/37 C22B9/22 

Описание патента на изобретение RU2381990C1

Изобретение относится к технологии очистки кремния, например при промышленном производстве кремния для фотоэлектронной промышленности, и в том числе для изготовления солнечных батарей.

Известен способ очистки кремния, включающий расплавление исходного неочищенного кремния вместе с силикатом кальция при температуре не ниже 1544°С, в ходе которого бор, присутствующий в качестве примеси в кремнии, переходит в шлак, выдержку расплава под атмосферой инертного газа для разделения на нижний слой шлака и верхний слой кремния с последующим регулированием температуры в пределах 1430-1544°С для коагуляции шлака, причем кремний в это время не претерпевает каких-либо изменений, и погружение охлаждающего элемента в расплав кремния, в результате чего на его поверхности осаждается кремний высокой чистоты. Затем этот элемент извлекают из расплава и удаляют с него массу застывшего кремния. На следующей стадии кремний высокой чистоты подвергают переплавке и вакуумной обработке для испарения содержащегося в нем фосфора (WO 9703922 А1 от 14.05.95).

Там же, фиг.2, раскрыто устройство для его осуществления, состоящее из неподвижного тигля с расплавом и опускаемого в расплав вращающегося и охлаждаемого изнутри элемента съема чистого кремния.

Однако данный способ и устройство для его осуществления не приспособлены для промышленного производства, являются трудоемкими.

Известны способ и устройство (ЕР 0855367 А1, опубликованный 29.07.1998), в котором тигель располагают под плазмотроном и загружают в него металлургический кремний, расплавляют его и на расплав кремния подают технологический газ или газовые смеси окислительного и восстановительного свойства, причем подачу этих газов и смесей производят вместе с потоком плазмы инертного газа, при этом зеркало расплава меняет свою площадь от площади круга при отсутствии воздействия плазмы до площади фигуры, ограниченной параболой при воздействии потока плазмы с технологическими газами и смесями, при этом поток плазмы может отклонятся от вертикальной оси на определенный угол, и сами потоки технологических газов и смесей подаются под определенным углом к потоку плазмы с осуществлением контроля параметров их подачи.

Устройство для осуществления этого способа состоит из тигля, на расстоянии d, от которого по вертикальной оси вверх расположен плазмотрон с каналами, подающими технологические газы и смеси, устройство его предварительного подогрева и желоб подачи неочищенного кремния.

Однако для получения этим способом кремния с уровнем чистоты от 10 ppmw до 1 ppmw и содержанием примесей фосфора, железа, алюминия, титана меньше чем 0.1 ppmw каждого, для бора от 0.1 до 0.3 ppmw, а углерода и кислорода меньше чем 5 ppmw необходим длительный процесс рафинирования, что исключает его получение промышленным способом.

Кроме того, расплав кремния имеет увеличивающуюся к низу тигля толщину расплава, что соответственно исключает равномерный характер его обработки и однородность чистоты получаемого кремния. Чем толще обрабатываемый слой, тем дольше время обработки расплава, что влечет за собой значительные затраты энергии, чистого инертного газа, водорода и других технологических смесей. А выравнивание слоя за счет каскада тиглей или системы перемешивания электромагнитным воздействием предполагает дополнительные затраты.

Известен способ (патент РФ 2154606 С2, 20.08.2000) производства кремния, пригодного для изготовления солнечных элементов из кремния металлургического сорта. Его в виде расплава заливают в форму и постепенно охлаждают до твердого состояния. Отношение высота - площадь в форме определяется уравнением Н/(S/π)1/2≥0,4, где Н - высота поверхности жидкости, S - средняя площадь поперечного сечения формы. При охлаждении кремния поверхность жидкости нагревают или теплоизолируют для замедления затвердевания. Происходит предварительная очистка кремния металлургического сорта. Полученный кремний вновь расплавляют и рафинируют. Фосфор удаляют расплавлением при давлении ниже атмосферного. Бор и углерод удаляют контактированием с газовой смесью кислого и инертного газов. Кислород удаляют раскислением. Рафинированный кремний отливают в пруток. Пруток очищают зонной плавкой от Fe, Al, Ti и Са.

Данный способ также не приспособлен для промышленного производства, является трудоемким.

Ближайшим аналогом является способ вакуумной очистки кремния путем расплавления в тигле с использованием электронно-лучевого нагрева и выдержки для удаления примесей, при этом процесс осуществляют в три стадии, на первой стадии в глубоком вакууме удаляют примеси, имеющие упругость паров выше, чем упругость паров кремния, на втором этапе в вакуумную камеру вводят окислители типа паров воды для образования окислов примесей, упругость паров которых ниже упругости паров кремния, и последующего удаления окислов по аналогии с первой стадией, на третьей стадии проводят направленную кристаллизацию расплава для оттеснения примесей, например металлов, в последнюю часть кристаллизуемого объема, которую затем и удаляют (US 2007077191, опубл. 05.04.2007).

Недостатками данного метода являются использование для проведения процесса стандартной аппаратуры электронно-лучевой плавки, включающей металлические (обычно медные) водоохлаждаемые тигли. В результате использования этой аппаратуры расплавленный кремний, находясь в контакте со стенками тигля, загрязняется различными примесями. Кроме того, процесс обычно ведут сканированием луча по поверхности расплава, что приводит к более или менее равномерному разогреву кремния чуть выше температуры плавления. В результате, с одной стороны, увеличиваются энергозатраты на проведение процесса очистки от примесей с высокой упругостью паров, с другой стороны, отсутствует перегрев расплава, который ускоряет процесс испарения упомянутых примесей.

Задачей изобретения является получение кремния повышенной чистоты, сокращение времени очистки, снижение энергетических и материальных затрат.

Технический результат заключается в том, что повышается скорость очистки кремния вакуумным испарением при одновременном исключении загрязнения очищаемого кремния фоновыми примесями из аппаратуры и оснастки.

Технический результат достигается за счет того, что в способе вакуумной очистки кремния, включающем расплавление кремния в тигле с использованием электронно-лучевого нагрева, выдержку расплава для испарения примесей и охлаждение с получением очищенного кремния, согласно изобретению расплавление ведут в кварцевом тигле, после расплавления выдержку расплава проводят при интенсивном теплоотводе от наружной части стенки тигля на уровне поверхности расплава и при нагреве электронным лучом, сконцентрированным на минимальной площади, преимущественно, центральной части поверхности расплава кремния.

При этом от наружной части стенки тигля отводят не менее 50% тепла от тепла, подводимого электронным лучом.

При этом со стороны пода тигля можно осуществлять дополнительную подачу тепла.

Сущность способа (см.чертеж) заключается в том, что при использовании электронного луча (1), сконцентрированного в одной зоне (2) на минимальной площади поверхности (4) расплава (3), и охлаждении Q1 тигля (5) на уровне поверхности расплава в расплаве по поверхности образуется градиент температуры, и значительная часть поверхности расплава имеет температуру, существенно превышающую температуру плавления. В результате этого повышается скорость испарения примесей с упругостью паров выше, чем у обрабатываемого материала. Использование тигля (5), изготовленного из кварца, обеспечивает минимальное загрязнение обрабатываемого материала примесями как путем растворения в расплаве, так и диффузией в процессе затвердевания направленной кристаллизацией. Для придания однородности расплаву его принудительно перемешивают, а после завершения вакуумной очистки кристаллизуют со скоростью, обеспечивающей эффективное оттеснение примесей фронтом кристаллизации в расплав с затвердеванием этих примесей в конце кристаллизуемого блока, который в дальнейшем удаляют. При обработке значительных количеств кремния необходимо использовать неглубокую и значительную по площади емкость (тигель), что приводит к сложности реализации способа. Для реализации способа при очистке значительных загрузок используют дополнительный нагрев пода тигля, который позволяет обеспечить полное расплавление и очистку загруженного кремния.

Способ осуществляют следующим образом.

Кремний, содержащий примеси с высокой упругостью паров, например сурьму, фосфор и мышьяк, помещают в кварцевый тигель 5, от которого обеспечивают наиболее эффективный отвод тепла Q1 с наружной поверхности тигля, используя произвольный холодильник (6), на уровне поверхности (4) расплава (3), находящемся в вакуумной камере (7), снабженной как минимум одной электронной пушкой (8). Кремний расплавляют электронно-лучевым нагревом с использованием или без использования дополнительных источников нагрева. После расплавления электронный луч 1 мощностью, достаточной для поддержания кремния в расплавленном состоянии, концентрируют на минимальной площади поверхности 4 расплава 3 в зоне 2 и выдерживают в течение времени, достаточного для удаления примесей из расплава. При обработке значительных количеств металла (в случае кремния более 5 кг) используют теплоизоляцию пода тигля, а при еще больших загрузках дополнительный нагрев пода тигля, который позволяет обеспечить полное расплавление и очистку загруженного металла.

Пример по прототипу

В медный водоохлаждаемый тигель загрузили 10 кг кремния, легированного мышьяком до концентрации 1018 ат/см3. Расплавили с помощью электронного луча и поддерживали в расплавленном состоянии 2 часа, сканируя лучом по поверхности расплава. Мощность, передаваемая лучом, составляла 150 кВт. Закристаллизовали в течение 50 минут, продолжая сканировать лучом поверхность с постепенным снижением мощности до 45 кВт.

Энергия, потребленная на процесс, составила 500 кВт·час.

В результате очистки концентрация мышьяка в кремнии вблизи поверхности тигля не изменилась, средняя концентрация примеси мышьяка в объеме составила 6·106 ат/см3. Концентрации фоновых металлических примесей в объеме возросли, таких как медь, железо и алюминий возросли в 1000-10000 раз.

Пример по предлагаемому способу

В кварцевый тигель (5) загрузили 10 кг кремния, легированного мышьяком до концентрации 1018 ат/см3. Расплавили с помощью электронного луча и поддерживали в расплавленном состоянии 2 часа. При этом после расплавления электронный луч сфокусировали в пятно диаметром менее 25 мм. Мощность, передаваемая лучом, составляла 20 кВт. Верхняя часть стенки тигля находилась в контакте с холодильником (6), обеспечивающим теплоотвод не менее 50% тепла, подводимого электронным лучом, т.е. не менее 10 кВт, а прочая поверхность стенки тигля охлаждалась преимущественно за счет излучения с ее поверхности. Со стороны пода тигля к расплаву подводили тепло, подавая на донный нагреватель мощность 20 кВт. Закристаллизовали в течение 70 минут, продолжая сканировать лучом поверхность с постепенным снижением мощности до 2 кВт и уменьшая мощность разогрева пода тигля до 10 кВт. Энергия, потребленная на процесс, составила 140 кВт·час. В результате очистки концентрация примеси вблизи поверхности тигля не изменилась, средняя концентрация примеси мышьяка в объеме составила 9·1014 ат/см3. Концентрации фоновых металлических примесей в объеме практически не изменились (на уровне погрешности измерений).

Похожие патенты RU2381990C1

название год авторы номер документа
СПОСОБ ВАКУУМНОЙ ОЧИСТКИ КРЕМНИЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ (ВАРИАНТЫ) 2009
  • Кравцов Анатолий Александрович
RU2403299C1
СПОСОБ ВАКУУМНОЙ ОЧИСТКИ КРЕМНИЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2009
  • Кравцов Анатолий Александрович
RU2403300C1
СПОСОБ ОЧИСТКИ МЕТАЛЛУРГИЧЕСКОГО КРЕМНИЯ УВЛАЖНЕННОЙ ПЛАЗМОЙ ПЕРЕМЕННОГО ТОКА В ВАКУУМЕ 2010
  • Карабанов Сергей Михайлович
  • Джхунян Валерий Леонидович
  • Ясевич Виктор Игоревич
RU2465202C2
СПОСОБ ПОЛУЧЕНИЯ СЛИТКОВ ПОЛИКРИСТАЛЛИЧЕСКОГО КРЕМНИЯ 2011
  • Карабанов Сергей Михайлович
  • Джхунян Валерий Леонидович
  • Ясевич Виктор Игоревич
  • Масахиро Хосино
RU2465201C1
СПОСОБ РАФИНИРОВАНИЯ МЕТАЛЛУРГИЧЕСКОГО КРЕМНИЯ ПЛАЗМОЙ СУХОГО АРГОНА С ИНЖЕКЦИЕЙ ВОДЫ НА ПОВЕРХНОСТЬ РАСПЛАВА С ПОСЛЕДУЮЩЕЙ НАПРАВЛЕННОЙ КРИСТАЛЛИЗАЦИЕЙ 2010
  • Карабанов Сергей Михайлович
  • Джхунян Валерий Леонидович
  • Ясевич Виктор Игоревич
RU2465199C2
Способ очистки металлургического кремния от углерода 2018
  • Карабанов Сергей Михайлович
  • Трубицын Андрей Афанасьевич
  • Суворов Дмитрий Владимирович
  • Сливкин Евгений Владимирович
  • Тарабрин Дмитрий Юрьевич
  • Карабанов Андрей Сергеевич
  • Беляков Олег Александрович
RU2707053C1
СПОСОБ ОЧИСТКИ КРЕМНИЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1999
  • Абдюханов М.А.
  • Абдюханов И.М.
  • Меркушкин В.М.
  • Кузьмин Ю.А.
RU2159213C2
СПОСОБ РАФИНИРОВАНИЯ МЕТАЛЛУРГИЧЕСКОГО КРЕМНИЯ 2011
  • Карабанов Сергей Михайлович
  • Джхунян Валерий Леонидович
  • Ясевич Виктор Игоревич
  • Масахиро Хосино
RU2465200C1
СПОСОБ И УСТРОЙСТВО ДЛЯ ПРОИЗВОДСТВА МЕТАЛЛИЧЕСКОГО СЛИТКА 2020
  • Константинов Виктор Вениаминович
  • Константинов Андрей Викторович
  • Чупятов Николай Николаевич
  • Дьяков Валерий Вячеславович
  • Морозов Юрий Викторович
  • Комаров Максим Александрович
RU2753847C1
СПОСОБ И УСТРОЙСТВО ДЛЯ ПРОИЗВОДСТВА СЛОИСТЫХ СЛИТКОВ 2012
  • Волков Анатолий Евгеньевич
RU2598020C2

Иллюстрации к изобретению RU 2 381 990 C1

Реферат патента 2010 года СПОСОБ ВАКУУМНОЙ ОЧИСТКИ КРЕМНИЯ

Изобретение относится к способу вакуумной очистки кремния от примесей. Способ включает расплавление кремния в тигле с использованием электронно-лучевого нагрева, выдержку расплава для испарения примесей и охлаждение с получением очищенного кремния. При этом расплавление ведут в кварцевом тигле. После расплавления проводят выдержку расплава при интенсивном теплоотводе от наружной части стенки тигля на уровне поверхности расплава и при нагреве электронным лучом, сконцентрированным на минимальной площади, преимущественно, центральной части поверхности расплава кремния. От наружной части стенки тигля отводят не менее 50% тепла от тепла, подводимого электронным лучом. Со стороны пода тигля осуществляют дополнительную подачу тепла. Техническим результатом изобретения является повышение скорости очистки кремния. 2 з.п. ф-лы, 1 ил.

Формула изобретения RU 2 381 990 C1

1. Способ вакуумной очистки кремния, включающий расплавление кремния в тигле с использованием электроннолучевого нагрева, выдержку расплава для испарения примесей и охлаждение с получением очищенного кремния, отличающийся тем, что расплавление ведут в кварцевом тигле, после расплавления выдержку расплава проводят при интенсивном теплоотводе от наружной части стенки тигля на уровне поверхности расплава и при нагреве электронным лучом, сконцентрированным на минимальной площади, преимущественно, центральной части поверхности расплава кремния.

2. Способ по п.1, отличающийся тем, что от наружной части стенки тигля отводят не менее 50% тепла от тепла, подводимого электронным лучом.

3. Способ по п.1 или 2, отличающийся тем, что со стороны пода тигля осуществляют дополнительную подачу тепла.

Документы, цитированные в отчете о поиске Патент 2010 года RU2381990C1

US 2007077191 А1, 05.04.2007
СПОСОБ ПРОИЗВОДСТВА КРЕМНИЯ ДЛЯ ИСПОЛЬЗОВАНИЯ В СОЛНЕЧНЫХ ЭЛЕМЕНТАХ 1998
  • Хироюки Баба
  • Масамити Абе
  • Казухиро Ханазава
  • Наомити Накамура
  • Нориеси Юге
  • Ясухико Сакагути
  • Есией Като
  • Тетсуя Фудзии
RU2154606C2
Прибор для испытания образцов грунта кручением 1983
  • Загоруйко Леонид Павлович
SU1176211A1
Опора мачты деррик-крана 1973
  • Тулупов Владимир Андреевич
  • Шаронин Олег Васильевич
  • Дементьев Борис Петрович
SU459421A1
US 4097584 А, 27.06.1978
СПОСОБ ИЗГОТОВЛЕНИЯ ТРУБ ИЗ ДВУХ РУЛОНИРОВАННЫХПОЛОС 0
SU274283A1

RU 2 381 990 C1

Авторы

Кравцов Анатолий Александрович

Даты

2010-02-20Публикация

2008-09-15Подача