СПОСОБ УСТРАНЕНИЯ КОЛЛИЗИИ В НАБОРЕ ДАТЧИКОВ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ Российский патент 2016 года по МПК G01D5/48 

Описание патента на изобретение RU2585911C1

Изобретение относится к области радиоэлектроники и может быть использовано в системах мониторинга состояния объектов с целью предупреждения аварийных ситуаций при контроле физических величин, в частности температуры.

Известна идентификационная на поверхностных акустических волнах (ПАВ) метка, имеющая встречно-штыревой преобразователь, делающий возможным разделение по кодовому признаку, и способы ее использования и изготовления (ЕА 007777 (B1)) [1], данная метка содержит пьезоэлектрическую подложку, снабженную несколькими рефлекторами, распределенными по группе слотов, размещенных на этой подложке в соответствии с импульсными характеристиками и фазовыми характеристиками, для кодирования некоторого числа в соответствии с импульсными и фазовыми характеристиками, и встречно-штыревой преобразователь (ВШП), размещенный на этой подложке, для генерирования кодированного импульса опроса. Считывание меток из набора происходит путем корреляционной обработки.

Однако такая конструкция метки не позволяет получить набор датчиков температуры без коллизии, обеспечивающих высокую стабильность показаний контролируемой физической величины.

Известны датчик на ПАВ-линии задержки, способ и система, повышающие точность обнаружения (CN 102313614) [2], согласно способу определяют соответствие задержки и температуры; определяют величину приращения задержки в зависимости от изменения температуры; определяют соответствие между разностью фаз в зависимости от приращения температуры. Таким образом, измерение температуры определяют по количеству циклов фазы между первым и третьим рефлекторами, причем первые два рефлектора служат для калибровки и устраняют проблему фазовой неоднозначности. Считывающее устройство принимает радиосигнал отклика датчика и производит его обработку.

Такой датчик имеет схожие конструктивные признаки в части топологии с заявляемым изобретением, однако в условиях низкого соотношения сигнал-шум не обеспечивает необходимой стабильности показаний датчика. В данном аналоге проблема коллизии не рассматривается.

Наиболее близким к заявляемому изобретению является многоцелевой способ антиколлизии датчиков физических величин на ПАВ-линиях задержки (CN 103471631 - прототип) [3], в котором проблему коллизии решают посредством разделения сигналов датчиков во времени. В соответствии со способом, на поверхности пьезоэлектрической подложки каждого датчика размещают не менее трех рефлекторов, первый рефлектор - τ1, второй рефлектор - τ2, третий рефлектор - τ3 так, что рефлекторы различных датчиков смещены на различное расстояние относительно ВШП.

Размещение рефлекторов датчиков происходит в следующих последовательностях:

Первая последовательность расположения рефлекторов на пьезоэлектрических подложках датчиков: первый рефлектор и второй рефлектор первого датчика, первый рефлектор и второй рефлектор второго датчика, …, первый рефлектор и второй рефлектор N-го датчика, затем третий рефлектор первого датчика, третий рефлектор второго датчика, …, третий рефлектор N-го датчика.

Вторая последовательность расположения рефлекторов на подложках датчиков: первый рефлектор первого датчика, первый рефлектор второго датчика, …, первый рефлектор N-го датчика, второй рефлектор и третий рефлектор первого датчика, второй рефлектор и третий рефлектор второго датчика, …, второй рефлектор и третий рефлектор N-го датчика.

Также решается проблема фазовой неоднозначности и используется ограниченное количество датчиков. Однако данная топология (конструкция) датчиков, где τ1 и τ2, по положению которых производят калибровку, расположены на меньшем друг от друга расстоянии, чем совместно к τ3, который, в свою очередь, обеспечивает требуемую чувствительность датчика, не обеспечивает стабильность показаний датчика, поскольку разность фаз между калибровочными рефлекторами во всем диапазоне изменения контролируемой физической величины составляет более 2π.

Соответственно, недостатком прототипа, по отношению к заявляемому техническому решению, является невозможность решения задачи коллизии датчиков, обеспечивающих стабильность показаний контролируемой физической величины.

Техническим результатом заявляемого изобретения является устранение коллизии в наборе датчиков, обеспечивающих повышение стабильности показаний контролируемой физической величины во всем диапазоне ее изменения.

Указанный технический результат достигается тем, что в способе устранения коллизии в наборе датчиков, согласно которому посредством разделения сигналов откликов по времени формируют набор из N датчиков на ПАВ-линиях задержки, согласно изобретению рефлекторы датчиков располагают на пьезоэлектрических подложках в следующем порядке: первый рефлектор первого датчика, первый рефлектор второго датчика, …, первый рефлектор N-го датчика, затем второй рефлектор первого датчика, второй рефлектор второго датчика, …, второй рефлектор N-го датчика, третий рефлектор первого датчика, третий рефлектор второго датчика, …, третий рефлектор N-го датчика, проводят опрос датчиков, принимают сигналы откликов датчиков и проводят их обработку, при этом последовательно для каждого датчика определяют время задержки сигнала между первым и третьим рефлекторами, определяют разность фаз для виртуального времени задержки, разность фаз для времени задержки между первым и вторым рефлекторами и разность фаз между первым и третьим рефлекторами, по которой определяют значение контролируемой физической величины, полученные значения передают на устройство сбора данных.

Устройство для реализации способа, выполненное в виде датчика на ПАВ-линии задержки, содержащей пьезоэлектрическую подложку, на поверхности которой нанесены встречно-штыревой преобразователь и не менее трех рефлекторов, смещенных на различное расстояние относительно встречно-штыревого преобразователя, отличается тем, что первый рефлектор имеет наименьшее время задержки, второй рефлектор располагается в средней части поверхности пьезоэлектрической подложки, третий рефлектор расположен на конце пьезоэлектрической подложки, таким образом, что их взаимное расположение определяет виртуальное время задержки, для которого приращение фазы составляет не более 2π во всем диапазоне изменения контролируемой физической величины.

Краткое пояснение чертежей:

Фиг. 1 иллюстрирует положение рефлекторов на пьезоэлектрической подложке датчика;

На Фиг. 2 изображен набор N датчиков;

Фиг. 3 иллюстрирует определение количества циклов фазы между первым и третьим рефлекторами;

На Фиг. 4 представлен результат моделирования градуировочной характеристики датчика (зависимость разности фаз между первым и третьим рефлекторами от температуры);

На Фиг. 5 представлен результат работы датчика из набора в количестве N штук.

В системе мониторинга состояния объектов при контроле физической величины в качестве датчиков применяют линии задержки на ПАВ. Набор из N датчиков с разделением сигналов откликов по времени формируют (например, с помощью вычислительных средств) по следующим параметрам:

1) Количество одновременно считываемых датчиков;

2) Диапазон изменений контролируемой физической величины;

3) Фиксированное смещение во времени откликов датчиков относительно друг друга;

4) Минимальное время задержки между откликами последних двух датчиков в заданном диапазоне изменений контролируемой физической величины.

Контрольно производится моделирование влияния сигналов датчиков друг на друга, где критерием отсутствия коллизии датчиков является наличие линейной зависимости разности фаз между первым и третьим рефлекторами для всех датчиков. В случае наличия коллизии увеличивают значение фиксированного смещения во времени между откликами датчиков в п. 3.

В результате имеют набор из N датчиков (Фиг. 1, Фиг. 2), рефлекторы которых располагают на пьезоэлектрической подложке, соблюдая последовательность: первый рефлектор первого датчика, первый рефлектор второго датчика, …, первый рефлектор N-го датчика, затем второй рефлектор первого датчика, второй рефлектор второго датчика, …, второй рефлектор N-го датчика, третий рефлектор первого датчика, третий рефлектор второго датчика, …, третий рефлектор N-го датчика.

Таким образом, получают набор датчиков, в котором за каждым откликом рефлектора последующего датчика получают отклик рефлектора с таким же порядковым номером следующего датчика.

Полученные датчики размещают на объектах контроля, находящихся в зоне опроса считывающего устройства. Посредством считывающего устройства, формирующего сигнал с линейной частотной модуляцией (ЛЧМ), производят опрос датчиков и принимают сигнал откликов датчиков.

Устройство для реализации способа, выполненное в виде датчика на ПАВ-линии задержки, содержит пьезоэлектрическую подложку, на поверхности которой нанесены ВШП и не менее трех рефлекторов, смещенных на различное расстояние относительно ВШП.

При воздействии радиосигнала считывателя на ВШП за счет обратного пьезоэффекта происходит преобразование электромагнитного колебания в акустическую волну, которая распространяется вдоль поверхности пьезоэлектрической подложки, затем отражается от соответствующих рефлекторов и возвращается обратно на ВШП, где, за счет прямого пьезоэффекта, происходит преобразование акустической волны в электромагнитную.

Однако для определения количества циклов фазы между рефлекторами необходимо решение проблемы фазовой неоднозначности в виду того, что разность фаз определяется с точностью 2π.

Эта проблема решается следующим образом:

Определим фазовый набег для времени задержки τ с учетом влияния физической величины X согласно следующей формуле:

где f - начальная частота ЛЧМ-сигнала, МГц;

τ - время задержки в нижней точке диапазона контролируемой физической величины, [нс];

XCD - коэффициент расширения пьезоэлектрической подложки под действием физической величины, ppm/[Х];

ΔХ - приращение физической величины, [X];

Тогда из формулы (1) приращение фазы вследствие изменения внешней физической величины определяется следующим образом:

Таким образом, чтобы величина виртуального времени задержки составляла не более 2π в заданном диапазоне температур, необходимо выполнение следующего условия:

В связи с тем, что на практике время задержки τ соответствует расстоянию между рефлекторами, которое меньше допустимой дистанции между двумя рефлекторами при размещении их на пьезоэлектрической подложке, выбираются такие взаимные положения рефлекторов, которые определяют виртуальное время задержки τ3121.

Таким образом, расположение рефлекторов на пьезоэлектрической подложке: для первого рефлектора наименьшее время задержки τ1, второй рефлектор в средней части поверхности пьезоэлектрической подложки с временем задержки τ2 и третий рефлектор на конце пьезоэлектрической подложки с виртуальным временем задержки τ3 так, чтобы для τ3121 выполнялось следующее соотношение:

где τ3121 имеет приращение не более 2π во всем диапазоне изменения физической величины.

После того как считыватель принял сигнал откликов датчиков, проводят обработку полученных откликов сигналов датчиков. При этом для каждого датчика выполняют последовательность действий:

1: Определяют время задержки сигнала между первым и третьим рефлекторами τ13;

2: Основываясь на τ1313→φ3121), определяют разность фаз для виртуального времени задержки φ3121;

3: Основываясь на φ31213121→φ21), определяют разность фаз между первым и вторым рефлекторами φ21;

4: Основываясь на φ2121→φ31), определяют разность фаз между первым и третьим рефлекторами φ31;

5: Основываясь на разности фаз между первым и третьим рефлекторами φ31, определяют значение контролируемой физической величины X, которое передают на устройство сбора данных.

Из Фиг. 3 видно, что определение разности фаз на шагах 1-3 позволяет однозначно определить количество циклов фазы между рефлекторами, тем самым решается проблема фазовой неоднозначности между первым и третьим рефлекторами.

Пример

Задав конкретные значения, докажем справедливость для заявляемого, в качестве изобретения, технического решения:

Для датчиков температуры на ПАВ-линиях задержки, работающих в диапазоне температур от -30 до 120°C, с пьезоэлектрической подложкой из ниобата лития среза Y-X 128°, имеющего температурный коэффициент расширения 75 ppm, и считывающего устройства, формирующего зондирующий ЛЧМ-сигнал в диапазоне частот 2400…2483 МГц, определим, подставляя значения в (3), величину виртуального времени задержки τ3121:

Для первого датчика (из заданного количества одновременно считываемых) выберем расположение рефлекторов на пьезоэлектрической подложке, удовлетворяющих соотношению (4):

- время задержки первого рефлектора;

- время задержки второго рефлектора;

- время задержки третьего рефлектора.

Тогда время задержки между первым и вторым рефлекторами первого датчика :

Время задержки между первым и третьим рефлекторами первого датчика :

Тогда время задержки τ3121:

что согласуется с условием (3).

Сформируем набор одновременно контролируемых датчиков без коллизии в количестве 9 штук. Используя данные о задержках рефлекторов первого датчика и данных из Таблицы 1, проведем анализ на отсутствие коллизии датчиков:

Определим возможное минимальное время задержки между сигналами откликов датчиков в заданном температурном диапазоне, которое равно минимальному времени задержки между третьим рефлектором 8-го датчика температуры, находящегося при максимальной температуре, и третьим рефлектором 9-го датчика температуры, находящего при минимальной температуре. Для этого найдем время задержки третьего рефлектора для таких датчиков температуры:

Определим минимальную задержку между сигналами датчиков:

Проверим отсутствие коллизии между датчиками путем моделирования работы одного из датчиков, в условиях присутствия стороннего датчика, сигналы которого смещены во времени на τmin. Результат моделирования работы датчика отображен на Фиг. 4, из которого видно, что зависимость разности фаз между первым и третьим рефлекторами от температуры для датчика является линейной, таким образом, сторонний датчик не оказывает влияния на его работу и обеспечивается отсутствие коллизии между ними. Поскольку τmin является минимальным временем задержки между сигналами для всего набора датчиков во всем диапазоне изменения контролируемой физической величины, получаем отсутствие коллизии в зоне опроса считывающего устройства для набора таких датчиков во всем диапазоне изменения контролируемой физической величины.

Заявителем проводились испытания таких датчиков на ПАВ-линиях задержки. Результаты работы датчиков в реальном масштабе времени представлены на Фиг. 5.

Список использованной литературы

1. ЕА 007777 (В1) «Идентификационная ПАВ-метка, имеющая встречно-штыревой преобразователь, делающий возможным кодовое различение, и способы ее использования и изготовления», МПК: G06K 19/067; H01L 41/08; Н03Н 9/64, Патентообладатель: RF SAW COMPONENTS INC (US).

2. CN 102313614 «Датчик на ПАВ-линии задержки в линии задержки, способ и система, повышающие точность обнаружения», МПК: G01K 11/22, Патентообладатель: UNIV CHONGQING.

3. CN 103471631 «Многоцелевой способ антиколлизии датчика на ПАВ-линии задержки», МПК: G01D 5/48, Патентообладатель: SALISENSE TECHNOLOGY СО LTD (CN).

Похожие патенты RU2585911C1

название год авторы номер документа
СПОСОБ И УСТРОЙСТВО МОНИТОРИНГА ТЕМПЕРАТУРЫ НА ОСНОВЕ ПАССИВНЫХ ЛИНИЙ ЗАДЕРЖКИ НА ПОВЕРХНОСТНЫХ АКУСТИЧЕСКИХ ВОЛНАХ С ФУНКЦИЕЙ АНТИКОЛЛИЗИИ 2018
  • Калинин Владимир Анатольевич
  • Карапетьян Геворк Яковлевич
  • Кислицын Василий Олегович
RU2756413C1
Система измерения температуры шин электрических шкафов 2020
  • Усков Иван Валерьевич
  • Кронидов Тимофей Вячеславович
  • Строганов Кирилл Александрович
  • Люлин Борис Николаевич
  • Белов Юрий Владимирович
  • Киселёв Владислав Павлович
  • Савчук Александр Дмитриевич
RU2748868C1
Пассивный антиколлизионный датчик температуры на поверхностных акустических волнах с частотно-временным кодовым отличием 2017
  • Сорокин Александр Васильевич
  • Шепета Александр Павлович
  • Ваттимена Гисбертх Мауритс
RU2665496C1
Пассивная антиколлизионная радиочастотная идентификационная метка на поверхностных акустических волнах с частотно-временным кодовым различием 2015
  • Сорокин Александр Васильевич
  • Шепета Александр Павлович
  • Смирнов Юрий Геннадьевич
RU2616342C1
Устройство на поверхностных акустических волнах 1991
  • Зеленов Григорий Яковлевич
SU1828565A3
АКУСТОКАЛОРИМЕТРИЧЕСКИЙ СЕНСОР ДЛЯ СИГНАЛИЗАЦИИ ИЗМЕНЕНИЙ ГАЗОВОГО СОСТАВА ЗАМКНУТЫХ ПОМЕЩЕНИЙ 2015
  • Анисимкин Владимир Иванович
  • Верона Енрико
RU2606347C1
Энергонезависимый транспондер 2017
  • Дорохов Сергей Петрович
RU2669203C1
Многодиапазонная радиочастотная идентификационная метка на поверхностных акустических волнах 2015
  • Сучков Сергей Германович
  • Сучков Дмитрий Сергеевич
  • Янкин Сергей Сергеевич
  • Николаевцев Виктор Андреевич
  • Шатрова Юлия Анатольевна
  • Никитов Сергей Аполлонович
  • Россошанский Андрей Владимирович
RU2609012C1
ПАССИВНЫЙ БЕСПРОВОДНЫЙ ДАТЧИК МАГНИТНОГО ПОЛЯ НА ПОВЕРХНОСТНЫХ АКУСТИЧЕСКИХ ВОЛНАХ 2018
  • Калинин Владимир Анатольевич
  • Карапетьян Геворк Яковлевич
  • Кислицын Василий Олегович
RU2758341C1
СИСТЕМА ИЗМЕРЕНИЙ И ДОЛГОВРЕМЕННОГО КОНТРОЛЯ СОСТОЯНИЯ КОНСТРУКЦИИ ЗДАНИЯ ИЛИ ИНЖЕНЕРНО-СТРОИТЕЛЬНОГО СООРУЖЕНИЯ 2015
  • Прохорович Владимир Евгеньевич
  • Дикарев Виктор Иванович
  • Меньшиков Сергей Станиславович
  • Вдовенко Сергей Владимирович
RU2582233C1

Иллюстрации к изобретению RU 2 585 911 C1

Реферат патента 2016 года СПОСОБ УСТРАНЕНИЯ КОЛЛИЗИИ В НАБОРЕ ДАТЧИКОВ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ

Использование: для мониторинга состояния объектов с целью предупреждения аварийных ситуаций при контроле физических величин. Сущность изобретения: по предлагаемому способу формируют набор из N датчиков на линиях задержки на поверхностных акустических волнах, рефлекторы датчиков располагают на пьезоэлектрических подложках в следующем порядке: первый рефлектор первого датчика, первый рефлектор второго датчика, ..., первый рефлектор N-го датчика, затем второй рефлектор первого датчика, второй рефлектор второго датчика, ..., второй рефлектор N-го датчика, третий рефлектор первого датчика, третий рефлектор второго датчика, …, третий рефлектор N-го датчика, проводят опрос датчиков, принимают сигналы откликов датчиков и проводят их обработку, при этом последовательно для каждого датчика определяют время задержки сигнала между первым и третьим рефлекторами, определяют разность фаз для виртуального времени задержки, разность фаз для времени задержки между первым и вторым рефлекторами и разность фаз между первым и третьим рефлекторами, по которой определяют значение контролируемой физической величины, полученные значения передают на устройство сбора данных. Технический результат: повышение стабильности показаний контролируемой физической величины во всем диапазоне ее изменения. 2 н.п. ф-лы, 5 ил., 1 табл.

Формула изобретения RU 2 585 911 C1

1. Способ устранения коллизии в наборе датчиков, согласно которому посредством разделения сигналов откликов по времени формируют набор из N датчиков на линиях задержки на поверхностных акустических волнах, отличающийся тем, что рефлекторы датчиков располагают на пьезоэлектрических подложках в следующем порядке: первый рефлектор первого датчика, первый рефлектор второго датчика, ..., первый рефлектор N-го датчика, затем второй рефлектор первого датчика, второй рефлектор второго датчика, ..., второй рефлектор N-го датчика, третий рефлектор первого датчика, третий рефлектор второго датчика, …, третий рефлектор N-го датчика, проводят опрос датчиков, принимают сигналы откликов датчиков и проводят их обработку, при этом последовательно для каждого датчика определяют время задержки сигнала между первым и третьим рефлекторами, определяют разность фаз для виртуального времени задержки, разность фаз для времени задержки между первым и вторым рефлекторами и разность фаз между первым и третьим рефлекторами, по которой определяют значение контролируемой физической величины, полученные значения передают на устройство сбора данных.

2. Устройство для реализации способа, выполненное в виде датчика на линии задержки на поверхностных акустических волнах, содержащей пьезоэлектрическую подложку, на поверхности которой нанесены встречно-штыревой преобразователь и не менее трех рефлекторов, смещенных на различное расстояние относительно встречно-штыревого преобразователя, отличающееся тем, что первый рефлектор имеет наименьшее время задержки, второй рефлектор располагается в средней части поверхности пьезоэлектрической подложки, третий рефлектор расположен на конце пьезоэлектрической подложки, таким образом, что их взаимное расположение определяет виртуальное время задержки, для которого приращение фазы составляет не более 2π во всем диапазоне изменения контролируемой физической величины.

Документы, цитированные в отчете о поиске Патент 2016 года RU2585911C1

US 8384524 26.02.2013
В.Ю
Юркин, Т
И
Мохсени, Иерархические подходы к самоорганизации в беспроводных сверхширокополосных сенсорных сетях на основе хаотических радиоимпульсов, ТРУДЫ МФТИ
Изложница с суживающимся книзу сечением и с вертикально перемещающимся днищем 1924
  • Волынский С.В.
SU2012A1
Очаг для массовой варки пищи, выпечки хлеба и кипячения воды 1921
  • Богач Б.И.
SU4A1
Гуреева О.,Система радиочастотной идентификации на поверхностных акустических волнах, Компоненты и нанотехнологии, N6, 2005
МИКРОПРОЦЕССОРНЫЙ МАГНИТОСТРИКЦИОННЫЙ ПРЕОБРАЗОВАТЕЛЬ ПОЛОЖЕНИЯ В КОД 1999
  • Надеев А.И.
  • Кононенко С.В.
  • Кузнецов Р.О.
RU2175754C2
СПОСОБ КОМПЛЕКСНОГО ТЕЛЕМОНИТОРИНГА ПОДВИЖНЫХ ОБЪЕКТОВ 2012
  • Белов Юрий Георгиевич
  • Кейстович Александр Владимирович
RU2487418C1

RU 2 585 911 C1

Авторы

Шубарев Валерий Антонович

Люлин Борис Николаевич

Кронидов Тимофей Вячеславович

Калинин Владимир Анатольевич

Даты

2016-06-10Публикация

2015-03-31Подача