СПОСОБ ПОЛУЧЕНИЯ ФЕРРОМАГНИТНОЙ ЖИДКОСТИ Российский патент 2016 года по МПК H01F1/28 

Описание патента на изобретение RU2586965C1

Изобретение относится к магнитным материалам, диспергированным в жидкости соединениям железа, а именно к закиси-окиси железа (Fe3O4), к способу получения магнитной жидкости. Изобретение может быть использовано в области медицины.

Известен способ получения магнитной жидкости по реакции Элмора [патент РФ №2208584]. Способ основан на использовании солей железа (II) и (III) (FeCl3·6H2O и FeSO4·7H2O), где дисперсионной средой являются кремнийорганические жидкости линейного строения или синтетические углеводородные масла полимера олефина. Недостатком этого способа является невозможность получения ферромагнитной жидкости на водной основе, так как используемые стабилизаторы несовместимы с водой.

Известен способ получения концентрата магнитной жидкости [патент РФ №2057380] путем осаждения высокодисперсного магнетита (менее 100Е) с узким распределением по размеру частиц из водных растворов солей двух- и трехвалентного железа аммиаком при их совместном сливе непрерывным способом в реакторе идеального вытеснения, при этом pH реакционной среды и температура поддерживаются постоянными и оптимальными в пределах pH 9-10, а температура 40-60°C. Промывка осадка и пептизация идут при нагревании в растворе олеиновой кислоты в керосине, осаждение реагентов проводят в растворе, дополнительно содержащем хлористый аммоний. Концентрат магнитной жидкости содержит высокодисперсный магнетит, олеиновую кислоту и керосин. Недостатками описанного способа является работа в диапазоне pH 9-10, что существенно сказывается на применимости готового продукта в различных областях промышленности. Также требуется постоянное поддержание рабочей температуры и использование дополнительной техники, что усложняет и удорожает процесс получения магнитной жидкости.

Известен способ получения магнитной жидкости, выбранный за прототип. Способ основан на растворении в воде солей железа (II) и (III), смешении полученного раствора с водным раствором аммиака при перемешивании, отделении магнитного осадка, многократное промывании его до pH 7, стабилизации магнитных наночастиц олеатом натрия [Б.М. Берковский, В.Ф. Медведев, М.С. Краков. Магнитные жидкости. - М.: Химия, 1989. - 240 с.].

Химическое осаждение высокодисперсного магнетита заключается в быстрой нейтрализации при нагреве и постоянном перемешивании водного раствора солей двух- и трехвалентного железа (FeCl2 и FeCl3) избытком водного раствора аммиака. Образующийся в ходе реакции осадок состоит из частиц магнетита размером 2-20 нм при среднем размере около 7 нм, магнитные свойства их близки к магнитным свойствам монокристаллов магнетита. Ионы хлора и остатки растворенных солей удаляют из осадка многократной промывкой. Основным недостатком способа является образование в осадке, наряду с Fe3O4, частиц смешанного оксида mFeO·nFe2O3, где m≠n, что ухудшает магнитные свойства жидкости. Кроме того, использование в качестве стабилизатора олеата натрия резко повышает вязкость жидкости, что также способствует снижению магнитных свойств и устойчивости жидкости [Магнитные жидкости, Б.М. Боровский и др. - М.: Химия, 1989, с. 28].

Задачей является получение ферромагнитной жидкости с магнитными наночастицами и узким распределением их по размерам, обладающей высокой удельной намагниченностью насыщения и устойчивой в течение длительного периода времени.

Для решения задачи предложен способ получения ферромагнитной жидкости, включающий растворение в воде двойных солей железа - соли Мора и железоаммонийных квасцов, фильтрацию полученного раствора, покапельное смешение его с раствором аммиака при непрерывном интенсивном перемешивании, разделение образовавшейся суспензии на твердую и жидкую фазы, многократное промывание магнитного осадка до pH 7, обработка твердой фазы раствором стабилизатора, в качестве которого выбран раствор маннитола, отстаивание магнитной жидкости, разделение жидкой и твердой фаз с помощью магнита.

Применение двойных солей железа, соли Мора и железоаммонийных квасцов, в качестве исходных реагентов, покапельное введение раствора солей железа в раствор аммиака и использование в качестве стабилизатора маннитола приводит к образованию практически чистой ферромагнитной жидкости Fe3O4 с биоинертными частицами одного размера, не склонными к агломерации, с высокой удельной намагниченностью насыщения.

Двойные соли железа - соль Мора и железоаммонийные квасцы, - более устойчивы к окислению кислородом воздуха. Это позволяет точнее задавать отношение железа (II) к железу (III) в образующемся растворе.

Смешение раствора соли Мора и железоаммонийных квасцов с раствором аммиака производилось путем покапельного введения профильтрованного раствора солей железа в 25%-ный раствор аммиака при интенсивном перемешивании, при этом средний размер частиц уменьшается, и распределение по размерам сужается. Быстрое смешение растворов двойных солей и аммиака приводило в конечном счете к образованию частиц с более широким распределением по размерам.

В качестве стабилизатора использован раствор маннитола (D-маннита), при этом удается получить ферромагнитную жидкость на водной основе, так как указанный стабилизатор совместим с водой. Существенным преимуществом маннитола является меньшая вязкость, что позволяет получить устойчивую ферромагнитную жидкость с высокой удельной намагниченностью насыщения.

Совокупность отличительных признаков является необходимой и достаточной для решения поставленной задачи.

Растворимость маннитола в воде достаточно высока, но уже 25%-ный раствор готовится при незначительном нагревании, при остывании возможна частичная кристаллизация раствора. Возможно использование более концентрированных растворов указанного стабилизатора, при создании особых условий для хранения магнитной жидкости, например, особого температурного режима.

Многократное промывание осадка до pH 7 позволяет предотвратить коагуляцию наночастиц магнетита и обеспечивает в дальнейшем взаимодействие магнитных наночастиц с молекулами стабилизатора. Также возможность получения ферромагнитных жидкостей при pH нейтральной среды позволяет говорить о более широких возможностях применения готового продукта, в том числе и в медицинских целях.

Пример

Во всех экспериментах при растворении солей железа в воде было соблюдено соотношение солей железа (II) к железу (III) по массе как 1:1,7-1:2, например. В 125 мл дистиллированной воды растворяли 6 г железоаммонийных квасцов и 3 г соли Мора при перемешивании и нагревании. Полученный раствор отфильтровывали. В другую колбу наливали 38 мл 25%-ного раствора аммиака, затем покапельно при интенсивном перемешивании вводили профильтрованный раствор солей железа в раствор аммиака. Далее колбу с образовавшимся раствором устанавливали на постоянный магнит. Время разделения частиц магнетита от водного раствора двойных солей составляло не более 30 минут.

Многократно промывали: две трети раствора сливали, осторожно удерживая осадок на дне колбы магнитом, далее к осадку добавляли дистиллированную воду, тщательно перемешивали и устанавливали вновь на магнит. Операцию повторяли до тех пор, пока pH раствора не достигал устойчиво 7. После того, как последний промывной раствор был слит на две трети, загущенную ферромагнитную жидкость обрабатывали раствором стабилизатора маннитола при разных концентрациях.

Использовали, например, 10, 15 и 20%-ные растворы маннитола в воде. Эксперименты показали, что 40-50 мл раствора маннитола указанных концентраций достаточно для стабилизации приготовленных магнитных жидкостей по приведенной выше схеме. Опытным путем также установлено, что концентрации маннитола ниже 5% недостаточно для стабилизации наночастиц ферромагнитной жидкости на длительный срок.

Таким образом, получили ферромагнитную жидкость с магнитными наночастицами со средним размером 7,3-8,8 нм и узким распределением по размерам, обладающие высокой удельной намагниченностью насыщения 69-73 Гс·см3/г, а также высокой устойчивостью в течение длительного периода времени.

Похожие патенты RU2586965C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ ФЕРРОМАГНИТНОЙ ЖИДКОСТИ 2015
  • Демидов Александр Иванович
  • Полатайко Ирина Андреевна
RU2593392C1
СПОСОБ ПОЛУЧЕНИЯ МАГНИТНОЙ ЖИДКОСТИ 2006
  • Боковикова Татьяна Николаевна
  • Степаненко Сергей Викторович
  • Капустянская Жанна Владимировна
  • Двадненко Марина Владимировна
  • Чемерис Ольга Николаевна
  • Васильев Иван Александрович
RU2339106C2
СПОСОБ ПОЛУЧЕНИЯ ФЕРРОМАГНИТНОЙ ЖИДКОСТИ НА ПОЛИЭТИЛСИЛОКСАНОВОЙ ОСНОВЕ 2012
  • Арефьев Игорь Михайлович
  • Арефьева Татьяна Альбертовна
  • Казаков Юрий Борисович
RU2517704C1
Способ получения магнитной жидкости 2019
  • Евдокимов Вадим Сергеевич
  • Евдокимов Сергей Иванович
  • Евдокимова Неля Сергеевна
RU2709870C1
СУХОЙ КОНЦЕНТРАТ МАГНИТНОЙ ЖИДКОСТИ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2014
  • Арефьев Игорь Михайлович
  • Арефьева Татьяна Альбертовна
RU2558143C1
СПОСОБ ПОЛУЧЕНИЯ ФЕРРОМАГНИТНОЙ ЖИДКОСТИ 2010
  • Королёв Виктор Васильевич
  • Яшкова Валентина Ивановна
  • Рамазанова Анна Геннадьевна
  • Королёв Дмитрий Викторович
RU2426187C1
СПОСОБ ПОЛУЧЕНИЯ МАГНИТНОЙ ЖИДКОСТИ 2001
  • Михалев Ю.О.
  • Арефьева Т.А.
RU2208584C2
Способ получения магнитной жидкости на водной основе 1982
  • Грабовский Юрий Павлович
  • Карабак Тамара Павловна
SU1074826A1
МАГНИТНЫЙ КОМПОЗИЦИОННЫЙ СОРБЕНТ 2012
  • Кыдралиева Камиля Асылбековна
  • Юрищева Анна Александровна
  • Помогайло Анатолий Дмитриевич
  • Джардималиева Гульжиан Искаковна
  • Помогайло Светлана Ибрагимовна
  • Голубева Нина Даниловна
RU2547496C2
Способ получения магнитной жидкости 2016
  • Арефьев Игорь Михайлович
  • Арефьева Татьяна Альбертовна
RU2653022C2

Реферат патента 2016 года СПОСОБ ПОЛУЧЕНИЯ ФЕРРОМАГНИТНОЙ ЖИДКОСТИ

Изобретение относится к области электротехники, а именно к способу получения ферромагнитной жидкости с магнитными наночастицами со средним размером 7,3-8,8 нм и узким распределением по размерам. Повышение удельной намагниченности насыщения, около 69-73 Гс·см3/г, повышение устойчивости в течение длительного периода времени является техническим результатом изобретения. Способ получения ферромагнитной жидкости включает растворение в воде соли Мора и железоаммонийных квасцов, фильтрацию полученного раствора, по капельно смешение его с раствором аммиака при непрерывном интенсивном перемешивании, разделение образовавшейся суспензии на твердую и жидкую фазы, многократное промывание магнитного осадка до pH 7, обработка твердой фазы раствором стабилизатора, в качестве которого выбран раствор маннитола, отстаивание магнитной жидкости, разделение жидкой и твердой фаз с помощью магнита. 1 прим.

Формула изобретения RU 2 586 965 C1

Способ получения ферромагнитной жидкости путем растворения в воде солей железа (II) и (III), с последующей фильтрацией образующегося раствора, смешения его с водным раствором аммиака при интенсивном перемешивании, разделения образовавшейся смеси на твердую и жидкую фазы, многократной промывки твердой фазы водой до рН 7, обработки твердой фазы раствором стабилизатора при перемешивании, отстаивания суспензии, разделения жидкой и твердой фаз с помощью магнита, отличающийся тем, что в качестве солей железа (II) и (III) берут соль Мора и железоаммонийные квасцы, которые покапельно смешивают с раствором аммиака, а в качестве стабилизатора используют раствор маннитола в воде.

Документы, цитированные в отчете о поиске Патент 2016 года RU2586965C1

КОНЦЕНТРАТ МАГНИТНОЙ ЖИДКОСТИ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 1992
  • Силаев В.А.
RU2057380C1
СПОСОБ ПОЛУЧЕНИЯ МАГНИТНОЙ ЖИДКОСТИ 2001
  • Михалев Ю.О.
  • Арефьева Т.А.
RU2208584C2
СПОСОБ ПОЛУЧЕНИЯ МАГНИТНОЙ ЖИДКОСТИ 2008
  • Калаева Сахиба Зияддин Кзы
  • Макаров Владимир Михайлович
  • Шипилин Анатолий Михайлович
  • Захарова Ирина Николаевна
  • Ерехинская Анна Геннадьевна
  • Шипилин Михаил Анатольевич
RU2391729C1
WO 2015008842 A1, 22.01.2015
US 2013062286 A1, 14.03.2014.

RU 2 586 965 C1

Авторы

Демидов Александр Иванович

Полатайко Ирина Андреевна

Даты

2016-06-10Публикация

2015-03-27Подача