Изобретение относится к неорганической химии, конкретно к получению нанокристаллического диоксида марганца, полиморфные модификации которого, имеющие разнообразные морфологические формы, могут быть успешно использованы в составе катализаторов, биосенсоров, адсорбентов и особенно в источниках тока.
Основными структурными единицами полиморфных модификаций диоксида марганца являются октаэдры MnO6, различное взаимное сочленение которых приводит к формированию в структуре MnO2 слоев и каналов. Именно наличие каналов делает MnO2 интересным с точки зрения создания катодных материалов. Наименьшее содержание примесей в MnO2 характерно для пиролюзита (β-MnO2) и рамсделита (γ-MnO2). Для других модификаций MnO2 (α, λ, ε и δ) крайне характерно присутствие в их кристаллической структуре ионов Na+и K+.
В настоящее время актуальной задачей является разработка методов получения наностержней MnO2 β-модификации, представляющих большой практический интерес, ввиду того, что характерная для них анизотропия проводимости может приводить к появлению принципиально новых конструктивных решений при создании аккумуляторных элементов [Xu M.-W., Bao S.-J. // Energy Storage in the Emerging Era of Smart Grids; In tech: 2011; V. 12, P. 251-278].
Из [RU 2536649] известно, что при заряде и разряде Li-ионных аккумуляторов имеют место топотактические реакции, они состоят в инжекции электрона и внедрении катиона Li в твердую матрицу без разрушения внутренней структуры материала. Однако интеркаляция ионов Li в структуру материала может привести к существенным изменениям в строении материала: образование новой фазы, увеличение объема кристаллической ячейки, «вспучиванию» и т.п.
Материал, состоящий из однородных наностержней, в большей степени пригоден для интеркаляции ионов лития, поскольку он не будет испытывать серьезных структурных напряжений при прохождении катиона Li+ по каналам в структуре MnO2.
Известен способ [Xun Wang and Yadong Li // Synthesis and Formation Mechanism of Manganese Dioxide Nanowires/Nanorods, Chem. Eur. J: 2003, V. 9, №1, P. 19141-19147] получения наностержней диоксида марганца, заключающийся в том, что соли (NH4)2S2O8 и MnSO4·H2O растворяют в дистиллированной воде при комнатной температуре и перемешивают до образования однородного раствора. После чего его переносят в автоклав и подвергают гидротермальной обработке при температуре 140°C в течение 12 ч. Полученный продукт фильтруют, промывают дистиллированной водой и высушивают на воздухе. Образование наностержней α- и β-модификаций диоксида марганца проходит через промежуточную стадию образования δ-модификации диоксида марганца с пластинчатой морфологией.
Недостатком данного способа является то, что получаемая β-модификация диоксида марганца содержит примесь δ-модификации, имеющей слоистую структуру, что ухудшает фазовую однородность материала, необходимую при использовании в электрохимических ячейках.
Также недостатком этого метода является относительно высокая продолжительность синтеза.
Известен способ получения наностержней диоксида марганца, изложенный в [М. Wei, Y. Konishi, Н. Zhou, Н. Sugihara and Н. Arakawa // Synthesis of single-crystal manganese dioxide nanowires by soft chemical process, Nanotechnology: 2005, V. 16, P. 245-249] (прототип), заключается в том, что коммерческий γ-MnO2 смешивают с водой, и полученную суспензию подвергают гидротермальной обработке при температуре 140-200°C в течение 72 дней. Полученный продукт фильтруют, промывают водой и высушивают при температуре 60°C в течение 4 ч.
Существенным недостатком является относительно невысокая морфологическая однородность получаемого продукта.
Недостатком предложенного способа также является слишком большая продолжительность синтеза.
Техническая задача связана с тем, что коммерческий успех современных катодных материалов в значительной степени зависит от метода их получения, который должен обеспечивать возможность контроля морфологии и размера частиц.
Изобретение направлено на изыскание высокопроизводительного способа получения наностержней β-MnO2 для использования в литиевых источниках тока в качестве катодного материала с относительно высокой однородностью фракции по диаметру стержней, что значительно улучшает процесс интеркаляции ионов Li в структуру катодного материала.
Технический результат достигается тем, что предложен способ получения наностержней диоксида марганца, заключающийся в том, что смешивают водные растворы перманганата калия и нитрита натрия в мольном соотношении , равном 2:1÷5, до образования однородной дисперсной фазы в сильнощелочном растворе, после чего к нему при постоянном перемешивании медленно прикапывают неорганическую кислоту до достижения значения pH от 2 до 0,5, полученную суспензию помещают в тефлоновый автоклав, который устанавливают в гидротермально-микроволновую установку на 5÷25 мин при 90÷170°C при давлении 1÷20 атм и мощности микроволнового нагрева 150÷1000 Вт, полученный осадок отделяют декантацией, промывают дистиллированной водой и высушивают на воздухе при температуре не выше 70°C, в результате получают кристаллический пиролюзит β-MnO2, частицы которого имеют форму стержней диаметром свыше 10 нм и длиной до 2 мкм.
Целесообразно, что в качестве неорганической кислоты используют либо H2SO4, либо HNO3.
Мольные соотношения , равные 2:1÷5, выбирают из тех соображений, что при них образуется однородная дисперсная фаза.
Выбор диапазона кислотности обусловлен тем, что в среде с pH>2 в конечном продукте присутствует посторонняя примесь наночастиц δ-MnO2, которые характеризуются сфероидальной формой и шероховатой поверхностью, а при pH<0,5 в конечном продукте также присутствует посторонняя фаза.
Заявленный временной интервал 5÷25 минут определяется динамикой процесса формирования кристаллов, который в целом начинается с 5 минут и завершается через 25 минут, после чего линейные размеры наностержней не изменяются и улучшения функциональных свойств нанокристаллов не происходит.
Заявленный температурный интервал гидротермально-микроволновой обработки определен экспериментальным путем и является оптимальным для получения однородной фазы наностержней диоксида марганца, содержащей в своем составе кристаллы диаметром менее 100 нм. Минимальная температура автоклавной обработки обусловлена тем, что ниже 90°C наностержни не образуются. Верхний предел температуры обусловлен тем, что при температурах выше 170°C в получаемом конечном продукте качественных изменений не происходит. Оптимальным является автоклавная обработка в течение 8 минут при 150°C, при которой в конечном продукте однородность фракции 20÷25 нм составляет 90%.
В качестве гидротермально-микроволновой установки используют аппаратуру Berghof Speedwave MWS four, характеризующуюся давлением R20 атм и мощностью микроволнового нагрева 150÷1000 Вт.
Сущность изобретения заключается в том, что варьирование кислотности среды, продолжительности и температуры синтеза позволяет получать продукты с заданными параметрами однородности.
Изобретение проиллюстрировано следующими микрофотографиями.
Фиг. 1. Результаты растровой электронной микроскопии образца диоксида марганца, полученного по предложенному изобретению гидротермально микроволновой обработкой (ГТМВ) в течение 8 мин при 150°C из реакционной смеси с рН=1 (пример 1).
Фиг. 2. Результаты растровой электронной микроскопии образца диоксида марганца, полученного по прототипу.
Ниже приведены примеры иллюстрирующие, но не ограничивающие предложенный способ.
Пример 1
0,3 г KMnO4 растворяли в 38 мл дистиллированной воды, затем к полученному раствору добавляли 0,19 г NaNO2 (мольное соотношение составляло 2:3), после чего к смеси при постоянном перемешивании медленно прикапывали 0,5М H2SO4 до достижения рН=1. Полученную суспензию помещали в тефлоновый автоклав емкостью 100 мл (степень заполнения составляла 50%) и подвергали гидротермально-микроволновой обработке в установке Berghof Speedwave MWS four в течение 8 мин при 150°C. После завершения обработки автоклав извлекали и охлаждали на воздухе. Образовавшийся осадок отделяли декантацией, несколько раз промывали дистиллированной водой и сушили на воздухе при относительной влажности ~75% и температуре 60°C. Получали продукт с однородностью фракции 95% нм и диаметром наностержней 20÷25 нм.
Примеры 2-5 осуществляли по Примеру 1, меняя мольное соотношение реагентов, кислотность среды, время и температуру синтеза. Результаты сведены в Таблицу: «Показатель однородности фракции наностержней диоксида марганца, синтезированных по предлагаемому способу».
Предлагаемый способ позволяет получать наностержни β-MnO2 с достаточно высокой производительностью, а также с относительно высокой однородностью фракции по диаметру стержней, что определяет пригодность их применения в катодных материалах.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ НАНОРАЗМЕРНОГО ЦЕОЛИТА СТРУКТУРНОГО ТИПА ZSM-5 В ПРОТОННОЙ ФОРМЕ | 2022 |
|
RU2787374C1 |
Способ получения триоксида марганца γ-MnO | 2022 |
|
RU2777826C1 |
Способ получения стабильных водных коллоидных растворов наночастиц диоксида церия | 2016 |
|
RU2615688C1 |
АНОДНЫЙ МАТЕРИАЛ ДЛЯ ЛИТИЙ- И НАТРИЙ-ИОННЫХ АККУМУЛЯТОРОВ И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 2020 |
|
RU2730001C1 |
СПОСОБ ПОЛУЧЕНИЯ НИТЕВИДНЫХ КРИСТАЛЛОВ АКТИВНОГО МАТЕРИАЛА ПОЛОЖИТЕЛЬНОГО ЭЛЕКТРОДА ЛИТИЙ-ВОЗДУШНОГО АККУМУЛЯТОРА | 2011 |
|
RU2538605C2 |
Способ получения нанопорошков феррита кобальта и микрореактор для его реализации | 2016 |
|
RU2625981C1 |
Способ получения цеолита со структурой типа ферриерит | 2023 |
|
RU2807864C1 |
КОМПОЗИТ НА ОСНОВЕ НАНОРАЗМЕРНОГО ЦЕОЛИТА СТРУКТУРНОГО ТИПА ZSM-5 В ПРОТОННОЙ ФОРМЕ И КАРБИДА КРЕМНИЯ И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 2022 |
|
RU2799782C1 |
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИТА НА ОСНОВЕ МИКРОПОРИСТОГО ЦЕОЛИТА И МЕЗОПОРИСТОГО ОКСИДА КРЕМНИЯ | 2016 |
|
RU2613516C1 |
Способ получения композита монооксид марганца/углерод | 2022 |
|
RU2790818C1 |
Изобретение может быть использовано в неорганической химии и нанотехнологии. Для получения наностержней диоксида марганца смешивают водные растворы перманганата калия и нитрита натрия в мольном соотношении
1. Способ получения наностержней диоксида марганца, заключающийся в том, что смешивают водные растворы перманганата калия и нитрита натрия в мольном соотношении MnO4 - : NO2 -, равном 2:(1÷5), до образования однородной дисперсной фазы в сильнощелочном растворе, после чего к нему при постоянном перемешивании медленно прикапывают неорганическую кислоту до достижения значения рН от 2 до 0,5, полученную суспензию помещают в тефлоновый автоклав, который устанавливают в гидротермально-микроволновую установку на 5÷25 мин при 90÷170°C при давлении 1÷20 атм и мощности микроволнового нагрева 150÷1000 Вт, полученный осадок отделяют декантацией, промывают дистиллированной водой и высушивают на воздухе при температуре не выше 70°C, в результате получают кристаллический пиролюзит β-MnO2, частицы которого имеют форму стержней диаметром свыше 10 нм и длиной до 2 мкм.
2. Способ по п. 1, отличающийся тем, что в качестве неорганической кислоты используют либо H2SO4, либо HNO3.
WEI М | |||
et al., Synthesis of single-crystal manganese dioxide nanowires by soft chemical process, Nanotechnology, 2005, v | |||
Устройство для электрической сигнализации | 1918 |
|
SU16A1 |
Льночесальная машина | 1923 |
|
SU245A1 |
СПОСОБ ПОЛУЧЕНИЯ ЭЛЕКТРОЛИТИЧЕСКОГО ДИОКСИДА МАРГАНЦА | 1996 |
|
RU2108411C1 |
RU 2194666 C2, 20.12.2002 | |||
US 8962517 B2, 24.02.2015 | |||
WO 2009118526 A2, 01.10.2009 | |||
WO 2001087775 A1, 22.11.2001. |
Авторы
Даты
2016-06-20—Публикация
2015-03-20—Подача