Изобретение относится к области производства ракетной техники, а именно к изготовлению зарядов смесевого ракетного твердого топлива (СРТТ), которыми могут оснащаться ракетные двигатели.
В состав современных высокоэнергетических СРТТ входят компоненты на основе нитроэфиров. Обеспечение механических характеристик и гарантийных сроков хранения таких топлив осложняется процессами повышенного газовыделения компонентов активного горюче-связующего. Из уровня техники известен способ изготовления зарядов СРТТ по патенту РФ №2230052 (дата публикации 10.06.2004 г.), включающий смешивание окислителя с приготовленной смесью связующего с металлическим горючим, технологическими добавками с последующим сливом приготовленной топливной массы в корпус.
К недостаткам описанного способа следует отнести невозможность гарантированного получения заданных механических характеристик, отсутствие контроля процесса газовыделения из топлива в процессе хранения.
Наиболее близким к предлагаемому техническому решению и поэтому принятым за прототип, является способ изготовления зарядов смесевого ракетного топлива по патенту РФ №2534101 (дата публикации 27.11.2014 г.) включающий последовательное механическое перемешивание окислителя с приготовленной смесью горюче-связующего с пластификатором, металлическим горючим, технологическими добавками и слив приготовленной топливной массы в корпус.
К недостаткам прототипа следует отнести низкий уровень механических характеристик, повышенный уровень газовыделения из топлива, что отрицательно влияет на физико-химическую стабильность топлива, приводит к образованию трещин и отслоений и, как следствие, снижает гарантийный срок хранения заряда СРТТ.
Задачей предлагаемого технического решения является разработка способа изготовления заряда СРТТ, который обеспечивает минимальное газовыделение из топлива, вследствие чего обеспечивается физико-химическая стабильность заряда в течение всего гарантийного срока хранения.
Поставленная задача достигается предлагаемым способом изготовления зарядов смесевого ракетного твердого топлива, который включает последовательное механическое перемешивание окислителя и приготовленной смеси горюче-связующего на основе полимера с пластификатором, металлическим горючим, технологическими добавками и порционный слив приготовленной топливной массы в корпус, при этом входящий в состав горюче-связующего метилполивинилтетразольный полимер предварительно, перед смешением с пластификатором и остальными компонентами, сушат при температуре 100-140°С до постоянной массы полимера.
В частном случае, сушку метилполивинилтетразольного полимера проводят под вакуумом при температуре 20-100°С.
Предложенный способ отличается от прототипа тем, что входящий в состав горюче-связующего метилполивинилтетразольный полимер (полимер) предварительно, перед смешением с пластификатором и остальными компонентами, сушат при температуре 100-140°С до постоянной массы полимера.
Под постоянной массой полимера подразумевается масса полимера, которая не меняется в течение 30 минут в течение сушки.
Предварительная сушка полимера позволяет предварительно, до смешения его с остальными компонентами топлива, удалить влагу и другие летучие низкомолекулярные вещества, а также растворенные и капсулированные газы.
В результате повышается полнота удаления газов, что уменьшает газовыделение из топлива в процессе хранения и повышает физико-химическую стабильность заряда, что гарантирует заданный срок хранения заряда.
В частном случае, сушку полимера проводят под вакуумом при температуре 20-100°С.
Используется в случае отсутствия технологической возможности увеличить температуру сушки выше 100°С, например, при сушке полимера в реакторе с водяной рубашкой.
Сушка полимера при температуре выше 140°С может привести к спеканию и деструкции полимера, а при температуре ниже 20°С - к неоправданному увеличению длительности процесса.
Сравнительные исследования показали устойчивое улучшение физико-химической стабильности топлива, изготовленного по предлагаемому способу, по сравнению с известными способами и прототипом.
Ниже приведены результаты исследований газовыделения до и после сушки полимеров. В таблице 1 приведены потери летучих примесей в процессе сушки метилполивинилтетразольного полимера.
Из таблицы 1 видно, что в результате сушки полимера происходит снижение массы полимера за счет летучих примесей для различных партий на 3,6-4,4% масс.
В таблице 2 приведены скорости газовыделения связующих, приготовленных на исходных и высушенных полимерах.
Из таблицы 2 видно, что в результате сушки полимера скорость газовыделения горюче-связующих снизилась на 4-20%.
Таким образом, предлагаемое техническое решение позволяет простым способом существенно уменьшить газовыделение из топлива и тем самым повысить физико-химическую стабильность заряда в процессе гарантийного срока хранения.
Для пояснения выполнения способа приведены примеры конкретного выполнения, следует отметить, что предлагаемый способ получения зарядов смесевого ракетного топлива, как показали исследования, не зависит от природы окислителя, в качестве которого могут быть выбраны все известные на сегодняшний день окислители, используемые для смесевых ракетных твердых топлив (например, перхлорат аммония, перхлорат калия, аммиачная селитра, динитрамид аммония).
Пример 1
Изготовление зарядов смесевого твердого ракетного топлива проводят последовательным механическим перемешиванием в смесителе горюче-связующего на основе полимера и пластификатора, металлического горючего, окислителя и технологических добавок при температуре 43°С и остаточном давлении 10 мм рт. ст. Предварительно метилполивинилтетразольный полимер (например, метилполивинилтетразол аллилированный) сушат при температуре 140°С в течение 3 часов с последующим приготовлением горюче-связующего, с использованием нитроэфирного пластификатора - нитроглицерина, при остаточном давлении 10 мм рт. ст. и температуре 43°С до полного удаления летучего растворителя. В качестве металлического горючего используют порошкообразный алюминий, в качестве технологической добавки - отвердитель ТОН-2 (ди-N-оксид-1,3-динитрил-2,4,6-триэтилбензол), в качестве окислителя - перхлорат аммония. Полученная топливная масса порционно заливается в корпус или пресс-форму.
Пример 2
Изготовление зарядов смесевого твердого ракетного топлива проводят последовательным механическим перемешиванием в смесителе горюче-связующего на основе полимера и пластификатора, металлического горючего, окислителя и технологических добавок при температуре 45°С при остаточном давлении 10 мм рт. ст. Предварительно метилполивинилтетразольный полимер сушат при температуре 100°С в течение 3 часов с последующим приготовлением горюче-связующего с использованием пластификатора - динитратдиэтиленгликоля при остаточном давлении 10 мм рт. ст. и температуре 45°С до полного удаления летучего растворителя. В качестве металлического горючего используют диборид алюминия, а качестве технологической добавки - отвердитель ТОН-2 (ди-N-оксид-1,3-динитрил-2,4,6-триэтилбензол), в качестве окислителя - перхлорат калия. Полученная топливная масса порционно заливается в корпус или пресс-форму.
Пример 3
Изготовление зарядов смесевого твердого ракетного топлива проводят последовательным механическим перемешиванием в смесителе горюче-связующего на основе полимера и пластификатора, металлического горючего, окислителя и технологических добавок при температуре 48°С, остаточном давлении 10 мм рт. ст. Предварительно метилполивинилтетразольный полимер сушат при температуре 100°С в течение 1 часа при остаточном давлении 10 мм рт. ст. с последующим приготовлением горюче-связующего с использованием нитроэфирного пластификатора - нитроглицерина, при остаточном давлении 10 мм рт. ст. и температуре 48°С до полного удаления летучего растворителя. В качестве металлического горючего используют порошок алюминия. В качестве технологической добавки - отвердитель ТОН-2 (ди-N-оксид-1,3-динитрил-2,4,6-триэтилбензол), в качестве окислителя - перхлорат аммония. Полученная топливная масса порционно заливается в корпус или пресс-форму.
Пример 4
Изготовление зарядов смесевого твердого ракетного топлива проводят последовательным механическим перемешиванием в смесителе горюче-связующего на основе полимера и пластификатора, металлического горючего, окислителя и технологических добавок при температуре 50°С, остаточном давлении 10 мм рт. ст. Предварительно метилполивинилтетразол аллилированный полимер сушат при температуре 30°С в течение 10 часов при остаточном давлении 10 мм рт. ст. с последующим приготовлением горюче-связующего с использованием нитроэфирного пластификатора - нитроглицерина, при остаточном давлении 10 мм рт. ст. до полного удаления летучего растворителя. В качестве металлического горючего используют диборид алюминия. В качестве технологической добавки - отвердитель ТОН-2 (ди-N-оксид-1,3-динитрил-2,4,6-триэтилбензол), в качестве окислителя - динитрамид аммония. Полученная топливная масса порционно заливается в корпус или пресс-форму.
Полученные физико-механические характеристики отвержденной топливной массы представлены в таблице 3, из которой видно, что с использованием осушенного полимера, механические свойства полученных образцов повышаются, а объем газовыделения стабильно снижается.
Изготовленные таким способом заряды полностью соответствуют приемным нормам по физико-химическим характеристикам. Лабораторные испытания подтвердили их работоспособность. В настоящее время предлагаемый способ внедряется в серийное производство.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ИЗГОТОВЛЕНИЯ СМЕСЕВОГО РАКЕТНОГО ТВЕРДОГО ТОПЛИВА | 2016 |
|
RU2621789C1 |
СПОСОБ СМЕШЕНИЯ КОМПОНЕНТОВ ВЗРЫВЧАТОГО СОСТАВА | 2015 |
|
RU2602120C2 |
СПОСОБ ИЗГОТОВЛЕНИЯ ЗАРЯДОВ СМЕСЕВОГО РАКЕТНОГО ТВЕРДОГО ТОПЛИВА | 2013 |
|
RU2534101C1 |
СПОСООБ ИЗГОТОВЛЕНИЯ ЗАРЯДА СМЕСЕВОГО РАКЕТНОГО ТВЁРДОГО ТОПЛИВА | 2003 |
|
RU2242451C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ПРОЧНОСКРЕПЛЕННОГО С КОРПУСОМ РАКЕТНОГО ДВИГАТЕЛЯ ЗАРЯДА СМЕСЕВОГО РАКЕТНОГО ТВЕРДОГО ТОПЛИВА | 2008 |
|
RU2374213C1 |
СПОСОБ ПРОМЫШЛЕННОГО ПРОИЗВОДСТВА ЗАРЯДА СМЕСЕВОГО РАКЕТНОГО ТВЕРДОГО ТОПЛИВА | 2001 |
|
RU2194687C1 |
ТВЕРДОТОПЛИВНАЯ МЕТАЛЛИЗИРОВАННАЯ КОМПОЗИЦИЯ НА ОСНОВЕ НИТРАТА АММОНИЯ | 2014 |
|
RU2580735C2 |
ТВЕРДОТОПЛИВНАЯ КОМПОЗИЦИЯ НА ОСНОВЕ НИТРАТА АММОНИЯ | 2013 |
|
RU2543019C1 |
СПОСОБ ПОЛУЧЕНИЯ СМЕСЕВОГО ТВЕРДОГО ТОПЛИВА | 2008 |
|
RU2429282C2 |
СПОСОБ ИЗГОТОВЛЕНИЯ ВКЛАДНОГО БРОНИРОВАННОГО ЗАРЯДА СМЕСЕВОГО РАКЕТНОГО ТВЕРДОГО ТОПЛИВА | 2006 |
|
RU2315741C1 |
Изобретение относится к производству ракетной техники, а именно к изготовлению зарядов смесевого ракетного твердого топлива (СРТТ). Способ изготовления заряда смесевого ракетного твердого топлива включает последовательное механическое перемешивание окислителя и смеси горюче-связующего на основе полимера с пластификатором, металлическим горючим, технологическими добавками и порционный слив приготовленной топливной массы в корпус. Входящий в состав горюче-связующего метилполивинилтетразольный полимер предварительно, перед смешением с пластификатором и остальными компонентами, сушат при температуре 100-140°С до постоянной массы полимера. В частном случае сушку полимера проводят под вакуумом при температуре 20-100°С. Способ обеспечивает минимальное газовыделение из топлива, вследствие чего обеспечивается физико-химическая стабильность заряда в течение всего гарантийного срока хранения. 1 з.п. ф-лы, 3 табл., 4 пр.
1. Способ изготовления заряда смесевого ракетного твердого топлива, включающий последовательное механическое перемешивание окислителя и приготовленной смеси горюче-связующего на основе полимера с пластификатором, металлическим горючим, технологическими добавками и порционный слив приготовленной топливной массы в корпус, отличающийся тем, что входящий в состав горюче-связующего метилполивинилтетразольный полимер предварительно, перед смешением с пластификатором и остальными компонентами, сушат при температуре 100-140°С до постоянной массы полимера.
2. Способ изготовления по п.1, отличающийся тем, что сушку полимера проводят под вакуумом при температуре 20-100°С.
СПОСОБ ИЗГОТОВЛЕНИЯ ЗАРЯДОВ СМЕСЕВОГО ТВЕРДОГО ТОПЛИВА | 2002 |
|
RU2230052C2 |
СПОСОБ ПОЛУЧЕНИЯ ЗАРЯДОВ СМЕСЕВОГО РАКЕТНОГО ТВЕРДОГО ТОПЛИВА С ПРОГНОЗИРУЕМЫМИ ХАРАКТЕРИСТИКАМИ | 2001 |
|
RU2203871C1 |
СПОСОБ ПОЛУЧЕНИЯ СМЕСЕВОГО ТВЕРДОГО ТОПЛИВА | 2008 |
|
RU2429282C2 |
US 4875949 A, 24.10.1989 | |||
US 5498303 А, 12.03.1996 | |||
US 8192567 B2, 05.06.2012 | |||
US 2005230017 A1, 20.10.2005 | |||
US 20050257866 A1, 24.11.2005. |
Авторы
Даты
2016-07-27—Публикация
2015-06-02—Подача