СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ КРЕАТИНА В ГЕЛЛАНОВОЙ КАМЕДИ Российский патент 2016 года по МПК A61K9/50 A61K31/195 A61K47/36 A61J3/07 B82B1/00 

Описание патента на изобретение RU2596485C1

Изобретение относится к области инкапсуляции, в частности получения нанокапсул креатина, которые можно использовать в спортивной питании и животноводстве.

Ранее были известны способы получения микрокапсул лекарственных препаратов. Так, в Пат. 2092155 МПК A61K 047/02, A61K 009/16, опубликован 10.10.1997, Российская Федерация, предложен метод микрокапсулирования лекарственных средств, основанный на использовании облучения ультрафиолетовыми лучами.

Недостатками данного способа являются длительность процесса и применение ультрафиолетового излучения, что может оказывать влияние на процесс образования микрокапсул.

В пат. 2091071 МПК A61K 35/10, Российская Федерация, опубликован 27.09.1997, предложен способ получения препарата путем диспергирования в шаровой мельнице с получением микрокапсул.

Недостатком способа является применение шаровой мельницы и длительность процесса.

В пат. 2101010 МПК A61K 9/52, A61K 9/50, A61K 9/22, A61K 9/20, A61K 31/19, Российская Федерация, опубликован 10.01.1998, предложена жевательная форма лекарственного препарата со вкусовой маскировкой, обладающая свойствами контролируемого высвобождения лекарственного препарата, содержит микрокапсулы размером 100-800 мкм в диаметре и состоит из фармацевтического ядра с кристаллическим ибупрофеном и полимерного покрытия, включающего пластификатор, достаточно эластичного, чтобы противостоять жеванию. Полимерное покрытие представляет собой сополимер на основе метакриловой кислоты.

Недостатки изобретения: использование сополимера на основе метакриловой кислоты, так как данные полимерные покрытия способны вызывать раковые опухоли; сложность исполнения; длительность процесса.

В пат. 2173140 МПК A61K 009/50, A61K 009/127, Российская Федерация, опубликован 10.09.2001, предложен способ получения кремнийорганолипидных микрокапсул с использованием роторно-кавитационной установки, обладающей высокими сдвиговыми усилиями и мощными гидроакустическими явлениями звукового и ультразвукового диапазона для диспергирования.

Недостатком данного способа является применение специального оборудования - роторно-кавитационной установки, которая обладает ультразвуковым действием, что оказывает влияние на образование микрокапсул и при этом может вызывать побочные реакции в связи с тем, что ультразвук разрушающе действует на полимеры белковой природы, поэтому предложенный способ применим при работе с полимерами синтетического происхождения.

В пат. 2359662 МПК A61K 009/56, A61J 003/07, B01J 013/02, A23L 001/00, опубликован 27.06.2009, Российская Федерация, предложен способ получения микрокапсул с использованием распылительного охлаждения в распылительной градирне Niro при следующих условиях: температура воздуха на входе 10°С, температура воздуха на выходе 28°С, скорость вращения распыляющего барабана 10000 оборотов/мин. Микрокапсулы по изобретению обладают улучшенной стабильностью и обеспечивают регулируемое и/или пролонгированное высвобождение активного ингредиента.

Недостатками предложенного способа являются длительность процесса и применение специального оборудования, комплекс определенных условий (температура воздуха на входе 10°С, температура воздуха на выходе 28°С, скорость вращения распыляющего барабана 10000 оборотов/мин).

Наиболее близким методом является способ, предложенный в пат. 2134967 МПК A01N 53/00, A01N 25/28, опубликован 27.08.1999 г., Российская Федерация (1999). В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4 : 1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.

Недостатком метода является диспергирование в водной среде, что делает предложенный способ неприменимым для получения микрокапсул водорастворимых препаратов в водорастворимых полимерах.

Техническая задача - упрощение и ускорение процесса получения нанокапсул, уменьшение потерь при получении нанокапсул (увеличение выхода по массе).

Решение технической задачи достигается способом получения нанокапсул креатина, отличающимся тем, что в качестве оболочки нанокапсул используется геллановая камедь при их получении физико-химическим методом осаждения нерастворителем с использованием этилацетата в качестве осадителя.

Отличительной особенностью предлагаемого метода является использование геллановой камеди в качестве оболочки нанокапсул и креатин - в качестве их ядра, а также использование этилацетата в качестве осадителя.

Результатом предлагаемого метода являются получение нанокапсул креатина в геллановой камеди. Выход микрокапсул составляет 100%.

ПРИМЕР 1 Получение нанокапсул креатина, соотношение ядро/полимер 1:1

1 г креатина основания диспергируют в суспензию 1 г геллановой камеди в 5 мл гексана, в присутствии 0,01 г препарата Е472с (сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, причем лимонная кислота, как трехосновная, может быть этерифицирована другими глицеридами и как оксокислота - другими жирными кислотами. Свободные кислотные группы могут быть нейтрализованы натрием) при перемешивании 1000 об/мин. Далее приливают 5 мл этилацетата. Полученный осадок отфильтровывают и сушат при комнатной температуре.

Получено 2 г белого порошка. Выход составил 100%.

ПРИМЕР 2 Получение нанокапсул креатина, соотношение ядро/полимер 1:3

1 г креатина основания диспергируют в суспензию 3 г геллановой камеди в 10 мл гексана, в присутствии 0,01 г препарата Е472с при перемешивании 1000 об/мин. Далее приливают 10 мл этилацетата. Полученный осадок отфильтровывают и сушат при комнатной температуре.

Получено 4 г белого порошка. Выход составил 100%.

ПРИМЕР 3 Определение размеров нанокапсул методом NTA.

Измерения проводили на мультипараметрическом анализаторе наночастиц Nanosight LM0 производства Nanosight Ltd (Великобритания) в конфигурации HS-BF (высокочувствительная видеокамера Andor Luca, полупроводниковый лазер с длиной волны 405 нм и мощностью 45 мВт). Прибор основан на методе анализа траекторий наночастиц (Nanoparticle Tracking Analysis, NTA), описанном в ASTM E2834.

Оптимальным разведением для разведения было выбрано 1:100. Для измерения были выбраны параметры прибора: Camera Level = 16, Detection Threshold = 10 (multi), Min Track Length:Auto, Min Expected Size:Auto, длительность единичного измерения 215s, использование шприцевого насоса.

Получены нанокапсулы креатина физико-химическим методом осаждения нерастворителем с использованием этилацетата в качестве осадителя, что способствует увеличению выхода и ускоряет процесс нанокапсулирования. Процесс прост в исполнении и длится в течение 20 минут.

Предложенная методика пригодна для ветеринарной промышленности вследствие минимальных потерь, быстроты, простоты получения и выделения нанокапсул.

Похожие патенты RU2596485C1

название год авторы номер документа
Способ получения нанокапсул сухого экстракта шиповника 2016
  • Кролевец Александр Александрович
RU2639092C2
Способ получения нанокапсул резвератрола в геллановой камеди 2015
  • Кролевец Александр Александрович
RU2609739C1
Способ получения нанокапсул унаби в геллановой камеди 2016
  • Кролевец Александр Александрович
RU2624530C1
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ АДАПТОГЕНОВ В ГЕЛЛАНОВОЙ КАМЕДИ 2015
  • Кролевец Александр Александрович
RU2597153C1
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ АДАПТОГЕНОВ В КСАНТАНОВОЙ КАМЕДИ 2015
  • Кролевец Александр Александрович
RU2586612C1
Способ получения нанокапсул экоцида в конжаковой камеди 2015
  • Кролевец Александр Александрович
RU2688146C1
Способ получения нанокапсул бетулина в геллановой камеди 2016
  • Кролевец Александр Александрович
RU2622750C1
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ СЕРЫ 2015
  • Кролевец Александр Александрович
RU2592211C1
Способ получения нанокапсул сульфата железа (II) в геллановой камеди 2020
  • Кролевец Александр Александрович
RU2738077C1
Способ получения нанокапсул хлорамфеникола (левомицетина) 2020
  • Кролевец Александр Александрович
RU2736049C1

Иллюстрации к изобретению RU 2 596 485 C1

Реферат патента 2016 года СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ КРЕАТИНА В ГЕЛЛАНОВОЙ КАМЕДИ

Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул, и описывает способ получения нанокапсул креатина, характеризующийся тем, что в качестве оболочки используется геллановая камедь, а в качестве ядра используется креатин, при осуществлении способа креатин диспергируют в суспензию геллановой камеди в гексане в присутствии поверхностно-активного вещества е472с, при этом массовое соотношение ядро:оболочка при пересчете на сухое вещество составляет 1:1 или 1:3, затем при перемешивании приливают этилацетат, полученную суспензию отфильтровывают и сушат при комнатной температуре. Способ обеспечивает упрощение и ускорение процесса получения нанокапсул, уменьшение потерь при получении нанокапсул. 1 ил., 3 пр.

Формула изобретения RU 2 596 485 C1

Способ получения нанокапсул креатина, характеризующийся тем, что в качестве оболочки используется геллановая камедь, а в качестве ядра используется креатин, при осуществлении способа креатин диспергируют в суспензию геллановой камеди в гексане в присутствии поверхностно-активного вещества е472с, при этом соотношение ядро: оболочка при пересчете на сухое вещество составляет 1:1 или 1:3, затем при перемешивании приливают этилацетат, полученную суспензию отфильтровывают и сушат при комнатной температуре.

Документы, цитированные в отчете о поиске Патент 2016 года RU2596485C1

СПОСОБ ПОЛУЧЕНИЯ МИКРОКАПСУЛИРОВАННЫХ ПРЕПАРАТОВ, СОДЕРЖАЩИХ ПИРЕТРОИДНЫЕ ИНСЕКТИЦИДЫ 1997
  • Шестаков К.А.
  • Леви М.И.
  • Крейнгольд С.У.
  • Сизова Г.И.
  • Богданова Е.Н.
RU2134967C1
RU 2139046 C1, 10.10.1999
US 5204029, 20.04.1993
WO2004064544 A1, 05.08.2004
ЧУЕШОВ В.И., "Промышленная технология лекарств в 2-х томах", том 2, 2002, стр
Передвижная комнатная печь 1922
  • Лендер Ф.Ф.
SU383A1

RU 2 596 485 C1

Авторы

Кролевец Александр Александрович

Даты

2016-09-10Публикация

2015-02-24Подача