Изобретение относится к области нанотехнологии, медицине, фармакологии, фармацевтике и пищевой промышленности.
Ранее были известны способы получения микрокапсул.
В пат. 2173140, МПК A61K 009/50, A61K 009/127, Российская Федерация, опубликован 10.09.2001, предложен способ получения кремнийорганолипидных микрокапсул с использованием роторно-кавитационной установки, обладающей высокими сдвиговыми усилиями и мощными гидроакустическими явлениями звукового и ультразвукового диапазона для диспергирования.
Недостатком данного способа является применение специального оборудования - роторно-кавитационной установки, которая обладает ультразвуковым действием, что оказывает влияние на образование микрокапсул и при этом может вызывать побочные реакции в связи с тем, что ультразвук разрушающе действует на полимеры белковой природы, поэтому предложенный способ применим при работе с полимерами синтетического происхождения
В пат.2359662, МПК A61K 009/56, A61J 003/07, B01J 013/02, A23L 001/00, опубликован 27.06.2009, Российская Федерация, предложен способ получения микрокапсул хлорида натрия с использованием распылительного охлаждения в распылительной градирне Niro при следующих условиях: температура воздуха на входе 10°С, температура воздуха на выходе 28°С, скорость вращения распыляющего барабана 10000 оборотов/мин. Микрокапсулы по изобретению обладают улучшенной стабильностью и обеспечивают регулируемое и/или пролонгированное высвобождение активного ингредиента.
Недостатками предложенного способа являются длительность процесса и применение специального оборудования, комплекс определенных условий (температура воздуха на входе 10°С, температура воздуха на выходе 28°С, скорость вращения распыляющего барабана 10000 оборотов/мин).
Наиболее близким методом является способ, предложенный в пат. 2134967, МПК A01N 53/00, A01N 25/28, опубликован 27.08.1999, Российская Федерация (1999). В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4:1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.
Недостатком метода является диспергирование в водной среде, что делает предложенный способ неприменимым для получения микрокапсул водорастворимых препаратов в водорастворимых полимерах.
Техническая задача - упрощение и ускорение процесса получения нанокапсул, уменьшение потерь при получении нанокапсул (увеличение выхода по массе).
Решение технической задачи достигается способом получения нанокапсул адаптогенов, отличающимся тем, что в качестве оболочки нанокапсул используется ксантановая камедь, а в качестве ядра - адаптогены (экстракты элеутерококка, жень шеня, лимонник японский, аралия, родиола розовая) при получении нанокапсул методом осаждения нерастворителем с применением этилацетата в качестве осадителя.
Отличительной особенностью предлагаемого метода является получение нанокапсул методом осаждения нерастворителем с использованием этилацетата в качестве осадителя, а также использование ксантановая камедь в качестве оболочки нанокапсул и адаптогенов - в качестве ядра.
Результатом предлагаемого метода являются получение нанокапсул адаптогенов.
ПРИМЕР 1.. Получение нанокапсул экстракта элеутерококка, соотношение ядро:оболочка 1:3.
100 мг экстракта элеутерококка добавляют в суспензию ксантановой камеди в бутаноле, содержащий указанного 300 мг полимера в присутствии 0,01 г препарата Е472с (сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, причем лимонная кислота, как трехосновная, может быть этерифицирована другими глицеридами и как оксокислота - другими жирными кислотами. Свободные кислотные группы могут быть нейтрализованы натрием) в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Далее приливают 5 мл этилацетата. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 0,4 г порошка нанокапсул. Выход составил 100%.
ПРИМЕР 2. Получение нанокапсул экстракта элеутерококка, соотношение ядро:оболочка 5:1.
500 мг экстракта элеутерококка добавляют в суспензию ксантановой камеди в бутаноле, содержащий указанного 100 мг полимера в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Далее приливают 6 мл этилацетата. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 0,6 г порошка нанокапсул. Выход составил 100%.
ПРИМЕР 3. Получение нанокапсул экстракта жень-шеня, соотношение ядро:оболочка 1:3.
100 мг экстракта жень-шеня добавляют в суспензию ксантановой камеди в бутаноле, содержащий указанного 300 мг полимера в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Далее приливают 5 мл этилацетата. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 0,4 г порошка нанокапсул. Выход составил 100%.
ПРИМЕР 4. Получение нанокапсул экстракта жень-шеня, соотношение ядро:оболочка 5:1.
500 мг экстракта жень-шеня добавляют в суспензию ксантановой камеди в бутаноле, содержащий указанного 100 мг полимера в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Далее приливают 6 мл этилацетата. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 0,6 г порошка нанокапсул. Выход составил 100%.
ПРИМЕР 5. Получение нанокапсул экстракта лимонника китайского, соотношение ядро:оболочка 1:3.
500 мг экстракта лимонника китайского добавляют в суспензию ксантановой камеди в бутаноле, содержащий указанного 1500 мг полимера в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Далее приливают 10 мл этилацетата. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 2.0 г порошка нанокапсул. Выход составил 100%.
ПРИМЕР 6. Получение нанокапсул экстракта родиолы розовой, соотношение ядро : оболочка 1:3.
500 мг экстракта родиолы розовой добавляют в суспензию ксантановой камеди в бутаноле, содержащий указанного 1500 мг полимера в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Далее приливают 10 мл этилацетата. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 2.0 г порошка нанокапсул. Выход составил 100%.
ПРИМЕР 7. Получение нанокапсул экстракта аралии, соотношение ядро : оболочка 1:3.
500 мг экстракта аралии добавляют в суспензию ксантановой камеди в бутаноле, содержащий указанного 1500 мг полимера в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Далее приливают 10 мл этилацетата. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 2.0 г порошка нанокапсул. Выход составил 100%.
ПРИМЕР 8. Определение размеров нанокапсул методом NTA.
Измерения проводили на мультипараметрическом анализаторе наночастиц Nanosight LM0 производства Nanosight Ltd (Великобритания) в конфигурации HS-BF (высокочувствительная видеокамера Andor Luca, полупроводниковый лазер с длиной волны 405 нм и мощностью 45 мВт). Прибор основан на методе анализа траекторий наночастиц (Nanoparticle Tracking Analysis, NTA), описанном в ASTM E2834.
Оптимальным разведением для разведения было выбрано 1:100. Для измерения были выбраны параметры прибора: Camera Level = 16, Detection Threshold = 10 (multi), Min Track Length: Auto, Min Expected Size: Auto. длительность единичного измерения 215s, использование шприцевого насоса.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ АДАПТОГЕНОВ | 2015 |
|
RU2596482C1 |
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ АДАПТОГЕНОВ В ГЕЛЛАНОВОЙ КАМЕДИ | 2015 |
|
RU2597153C1 |
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ АДАПТОГЕНОВ | 2015 |
|
RU2599838C1 |
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ АДАПТОГЕНОВ В КАРРАГИНАНЕ | 2015 |
|
RU2596479C1 |
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ АДАПТОГЕНОВ В АГАР-АГАРЕ | 2015 |
|
RU2603457C1 |
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ АДАПТОГЕНОВ В АЛЬГИНАТЕ НАТРИЯ | 2015 |
|
RU2598748C1 |
Способ получения нанокапсул адаптогенов в агар-агаре | 2016 |
|
RU2633748C2 |
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ АДАПТОГЕНОВ | 2014 |
|
RU2575564C1 |
Способ получения нанокапсул адаптогенов в каррагинане | 2014 |
|
RU2607386C2 |
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ ВИТАМИНОВ В КСАНТАНОВОЙ КАМЕДИ | 2014 |
|
RU2565392C1 |
Изобретение относится в области нанотехнологии и фармацевтики. Описан способ получения нанокапсул адаптогенов в оболочке из ксантановой камеди. Согласно способу экстракт адаптогена добавляют в суспензию ксантановой камеди в бутаноле в присутствии препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Массовое соотношение экстракт адаптогена:ксантановая камедь 1:3 или 5:1. В качестве адаптогенов используют экстракт элеутерококка, женьшеня, лимонника китайского, аралии, родиолы розовой. Затем в качестве осадителя приливают этилацетат. Полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре. Изобретение обеспечивает упрощение и ускорение процесса получения нанокапсул и увеличение выхода по массе. 3 ил., 8 пр.
Способ получения нанокапсул адаптогенов в ксантановой камеди, характеризующийся тем, что в качестве оболочки нанокапсул используют ксантановую камедь, при этом экстракт адаптогена добавляют в суспензию ксантановой камеди в бутаноле в присутствии препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин и массовом соотношении экстракт адаптогена : ксантановая камедь 1:3 или 5:1, затем в качестве осадителя приливают этилацетат, полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре.
ЧУЕШОВ В.И | |||
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
NAGAVARMA B | |||
V | |||
N | |||
"Different techniques for preparation of polymeric nanoparticles", Asian Journal Pharm Clin Res, vol.5, suppl.3, 2012, pages 16-23 | |||
СОЛОДОВНИК В.Д | |||
"Микрокапсулирование", Москва, "Химия", 1980, стр.136 | |||
СПОСОБ ПОЛУЧЕНИЯ МИКРОКАПСУЛИРОВАННЫХ ПРЕПАРАТОВ, СОДЕРЖАЩИХ ПИРЕТРОИДНЫЕ ИНСЕКТИЦИДЫ | 1997 |
|
RU2134967C1 |
Способ получения микрокапсул | 1978 |
|
SU676316A1 |
Способ получения микрокапсул | 1976 |
|
SU707510A3 |
Авторы
Даты
2016-06-10—Публикация
2015-06-03—Подача