СПОСОБ ГАЗИФИКАЦИИ НИЗКОРЕАКЦИОННЫХ ТВЕРДЫХ ТОПЛИВ Российский патент 2016 года по МПК C10J3/00 B82Y40/00 

Описание патента на изобретение RU2600639C1

Изобретение относится к теплоэнергетике, кроме того, изобретение может быть использовано на предприятиях химической промышленности для получения синтез-газа, метана, аммония, жидких моторных топлив и других ценных химических продуктов и соединений.

Известен способ Texaco для газификации водоугольной суспензии в нисходящем потоке окислителя (кислорода). Для приготовления суспензии уголь предварительно измельчают до 100 мкм. Подача суспензии совместно с окислителем осуществляется в верхней части реактора с помощью насоса. Газификация протекает при высокой температуре (около 1500°C) и давлении (от 30 до 70 бар) в зависимости от назначения газификатора. Синтез-газ и жидкая зола выходят из нижней части реактора и затем охлаждаются. Затвердевший шлак удаляется, а вода рециркулируется в систему приготовления суспензии.

Основным недостатком является отсутствие возможности увеличения скорости реакции газификации топливной смеси.

Наиболее близким является способ Koppers-Totzek, в котором угольную пыль газифицируют в потоке окислителя. Предварительно подготовленную угольную пыль (пылевидное топливо) с частицами <100 мкм смешивают с кислородом и водяным паром и форсунками подают в камеру газификации. В камере газификации смесь движется прямотоком. Процесс протекает при атмосферном давлении. Температура уходящих газов 1500°C. Образующийся генераторный газ удаляют сверху горизонтальной камеры газификации, а жидкий шлак удаляют снизу (Christopher Higman, Maarten van der Burgt. Gasification (Second Edition) / Gulf Professional Publishing, 2008, p. 416).

Недостатки: для процесса характерна невысокая интенсивность и производительность процесса газификации.

Технической задачей является повышение эффективности процесса газификации и коэффициента использования топлива за счет интенсификации процесса газификации.

Задача решается за счет того, что в камеру газификации подают пылевидное топливо с помощью системы подвода пылевидного топлива, воздух нагревают и подают в камеру газификации с помощью системы подачи и нагрева окислителя, в воздушную струю перед камерой газификации впрыскивают воду и нанокатализаторы с помощью системы подачи наноматериалов и воды, зола удаляется из бункеров приема золы, генераторный газ удаляется с помощью системы отвода генераторного газа.

На чертежепредставлена принципиальная схема способа газификации низкореакционных твердых топлив, заключающаяся в том, что в камеру газификации 1 подают пылевидное топливо с помощью системы подвода пылевидного топлива 2, воздух нагревают и подают в камеру газификации 1 с помощью системы подачи и нагрева окислителя 3, в воздушную струю перед камерой газификации 1 впрыскивают воду и нанокатализаторы с помощью системы подачи наноматериалов и воды 4, зола удаляется из бункеров приема золы 5, 6, генераторный газ удаляется с помощью системы отвода генераторного газа 7.

Предлагаемый способ газификации низкореакционных твердых топлив осуществляют следующим образом.

Пылевидное топливо с помощью системы подвода пылевидного топлива 2 поступает в верхнюю часть камеры газификации 1. Одновременно происходит подогрев окислителя (воздуха) до температуры около 800°C с помощью системы подачи и нагрева окислителя 3, активация окислителя нанокатализатором и впрыск воды 4. Интенсификация процесса газификации осуществляется за счет внедрения в процесс газификации синглетного кислорода, сгенерированного путем облучения наноматериалов, в качестве которых используются астралены и таунит. Тепловое облучение наноматерила происходит естественным образом внутри камеры газификации. Синглетный кислород с энергией активацией большей, чем у молекулярного кислорода, способен повысить скорость реакции окисления (неполного горения), повышая эффективность процесса газификации в целом. В камере газификации струя пылевидного топлива смешивается с окислителем, с помощью лопастного аппарата (на чертеже не указан) создается восходящий струйно-вихревой поток, который обеспечивает интенсивное смешивание топлива с окислителем. Способ газификации в восходящем струйно-вихревом потоке окислителя подразумевает организацию подачи пылевидного топлива в камеру газификации по схеме противотока относительно восходящего струйно-вихревого потока окислителя с температурой 800-900°C, что позволяет подогреть пылевидное топливо до 150-200°C и улучшить начальные условия процесса газификации. Крупные частицы золы под действием силы тяжести выпадают в бункер приема золы 5 (зола удаляется в сухом виде т.к. температура в камере газификации ниже точки плавления золы), мелкие частицы золы уносятся в бункер приема золы 6. Полученный генераторный газ удаляется с помощью системы отвода генераторного газа 7. Процесс получения генераторного газа идет при атмосферном давлении внутри камеры газификации.

Способ предназначен для газификации низкореакционных твердых топлив (углей) различных марок для получения горючего генераторного газа. Твердое топливо считается низкореакционным, если оно характеризуются низким выходом летучих веществ, например, у Антрацитового Штыба Донецкого бассейна выход летучих веществ всего 4%. При непосредственном сжигании такого топлива в горелки необходимо дополнительно подавать дорогостоящий мазут или природный газ. Генераторный газ можно направлять в горелки котла для «подстветки» факела взамен дорогостоящему мазуту и природному газу.

Предлагаемый способ позволяет повысить скорость газификации низкореакционного пылевидного топлива, тем самым увеличивая производительность газификатора. Повышение коэффициента использования топлива возможно за счет интенсификации процесса газификации, позволяющей снизить коэффициент уноса золы и недожога топлива.

Похожие патенты RU2600639C1

название год авторы номер документа
УСТАНОВКА ГАЗИФИКАЦИИ НИЗКОРЕАКЦИОННЫХ ТВЕРДЫХ ТОПЛИВ 2018
  • Пащенко Вера Сергеевна
RU2705067C1
СПОСОБ КОНВЕРСИИ ТВЕРДОГО ТОПЛИВА И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ (ВАРИАНТЫ) 2008
  • Лурий Валерий Григорьевич
  • Пузырев Евгений Михайлович
RU2359011C1
СПОСОБ СТУПЕНЧАТОЙ ГАЗИФИКАЦИИ И СЖИГАНИЯ ТВЕРДОГО ТОПЛИВА В АЭРОШЛАКОВОМ РАСПЛАВЕ 1999
  • Мадоян А.А.
RU2147103C1
Способ газификации твердого топлива и устройство для его осуществления 2017
  • Тихомиров Игорь Владимирович
  • Егоров Олег Владимирович
  • Забегаев Александр Иванович
RU2663144C1
Способ газификации твердого топлива и устройство для его осуществления 2017
  • Тихомиров Игорь Владимирович
  • Егоров Олег Владимирович
  • Забегаев Александр Иванович
RU2662440C1
Способ газификации твердого топлива и устройство для его осуществления 2017
  • Тихомиров Игорь Владимирович
  • Егоров Олег Владимирович
  • Забегаев Александр Иванович
RU2668447C1
СПОСОБ И УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ ЭЛЕКТРОЭНЕРГИИ ПУТЕМ ИСПОЛЬЗОВАНИЯ КОНДЕНСИРОВАННЫХ ТОПЛИВ 2005
  • Кондра Евгений Иванович
  • Кочетков Геннадий Борисович
  • Рафеев Владимир Александрович
  • Тишин Анатолий Петрович
  • Фурсов Виктор Прокофьевич
RU2277638C1
СПОСОБ ГАЗИФИКАЦИИ КОНДЕНСИРОВАННЫХ ТОПЛИВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2007
  • Кондра Евгений Иванович
  • Фурсов Виктор Прокофьевич
RU2347139C1
ГАЗИФИКАТОР ПЕРЕРАБОТКИ ТВЕРДОГО НИЗКОСОРТНОГО УГЛЕРОДСОДЕРЖАЩЕГО СЫРЬЯ 2023
  • Белоглазов Илья Ильич
RU2818558C1
СПОСОБ ГАЗИФИКАЦИИ УГЛЕЙ И ЭЛЕКТРОДУГОВОЙ ПЛАЗМЕННЫЙ РЕАКТОР ДЛЯ ГАЗИФИКАЦИИ УГЛЕЙ 1994
  • Карпенко Е.И.
  • Ибраев Ш.Ш.
  • Буянтуев С.Л.
  • Цыдыпов Д.Б.
RU2087525C1

Иллюстрации к изобретению RU 2 600 639 C1

Реферат патента 2016 года СПОСОБ ГАЗИФИКАЦИИ НИЗКОРЕАКЦИОННЫХ ТВЕРДЫХ ТОПЛИВ

Изобретение относится к теплоэнергетике, кроме того, изобретение может быть использовано на предприятиях химической промышленности для получения синтез-газа, метана, аммония, жидких моторных топлив и других ценных химических продуктов и соединений. Способ заключается в том, что пылевидное топливо газифицируют в потоке окислителя и водяного пара при атмосферном давлении, генераторный газ отводят из камеры газификации, при этом пылевидное топливо смешивают с окислителем и паром внутри камеры газификации, в качестве окислителя используют воздух, активированный нанокатализаторами, в качестве нанокатализаторов используют астралены и таунит, внедряют в процесс газификации синглетный кислород, сгенерированный путем облучения наноматериала, подают пылевидное топливо в газификатор по схеме противотока относительно восходящего струйно-вихревого потока окислителя, поток окислителя с водяным паром закручивают с помощью лопастного аппарата, а золу удаляют в сухом виде. Техническим результатом является повышение эффективности процесса газификации и коэффициента использования топлива за счет интенсификации процесса газификации. 1 ил.

Формула изобретения RU 2 600 639 C1

Способ газификации низкореакционных твердых топлив, заключающийся в том, что пылевидное топливо газифицируют в потоке окислителя и водяного пара при атмосферном давлении, генераторный газ отводят из камеры газификации, отличающийся тем, что пылевидное топливо смешивают с окислителем и паром внутри камеры газификации, в качестве окислителя используют воздух, активированный нанокатализаторами, в качестве нанокатализаторов используют астралены и таунит, внедряют в процесс газификации синглетный кислород, сгенерированный путем облучения наноматериала, подают пылевидное топливо в газификатор по схеме противотока относительно восходящего струйно-вихревого потока окислителя, поток окислителя с водяным паром закручивают с помощью лопастного аппарата, а золу удаляют в сухом виде.

Документы, цитированные в отчете о поиске Патент 2016 года RU2600639C1

Christopher Higman, Maarten van der Burgt, "Gasification (Second Edition)", Gulf Professional Publishing, 2008
УСТРОЙСТВО ДЛЯ ГАЗИФИКАЦИИ СЫПУЧЕГО МЕЛКОДИСПЕРСНОГО УГЛЕРОДСОДЕРЖАЩЕГО СЫРЬЯ И ГРАНУЛИРОВАННЫХ БИОШЛАМОВ 2012
  • Масленников Владимир Васильевич
  • Баженов Владимир Ильич
  • Арнаутов Александр Анатольевич
RU2493487C1
СПОСОБ КОНВЕРСИИ ТВЕРДОГО ТОПЛИВА И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ (ВАРИАНТЫ) 2008
  • Лурий Валерий Григорьевич
  • Пузырев Евгений Михайлович
RU2359011C1
СПОСОБ СЖИГАНИЯ МАЛОРЕАКЦИОННОГО ПЫЛЕВИДНОГО ТОПЛИВА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1991
  • Варанкин Г.Ю.
  • Носихин В.Л.
  • Тажиев Э.И.
  • Корнев В.А.
  • Зуев О.Г.
  • Чернышев Е.В.
RU2009402C1
Скоростная пневматическая шина 1948
  • Чернышев И.Н.
SU74918A1

RU 2 600 639 C1

Авторы

Ефимов Николай Николаевич

Шафорост Дмитрий Анатольевич

Белов Александр Алексеевич

Федорова Наталья Васильевна

Ощепков Андрей Сергеевич

Рыжков Антон Владимирович

Пряткина Вера Сергеевна

Даты

2016-10-27Публикация

2015-08-27Подача