Изобретение относится к области нанотехнологии, медицины и пищевой промышленности.
Ранее были известны способы получения микрокапсул.
В пат. РФ 2173140, МПК A61K 009/50, A61K 009/127, опубл. 10.09.2001 предложен способ получения кремнийорганолипидных микрокапсул с использованием роторно-кавитационной установки, обладающей высокими сдвиговыми усилиями и мощными гидроакустическими явлениями звукового и ультразвукового диапазона для диспергирования.
Недостатком данного способа является применение специального оборудования - роторно-кавитационной установки, которая обладает ультразвуковым действием, что оказывает влияние на образование микрокапсул и при этом может вызывать побочные реакции в связи с тем, что ультразвук разрушающе действует на полимеры белковой природы, поэтому предложенный способ применим при работе с полимерами синтетического происхождения
В пат. РФ 2359662, МПК A61K 009/56, A61J 03/07, B01J 13/02, A23L 001/00, опубл. 27.06.2009 предложен способ получения микрокапсул хлорида натрия с использованием распылительного охлаждения в распылительной градирне Niro при следующих условиях: температура воздуха на входе 10°C, температура воздуха на выходе 28°C, скорость вращения распыляющего барабана 10000 об/мин. Микрокапсулы по изобретению обладают улучшенной стабильностью и обеспечивают регулируемое и/или пролонгированное высвобождение активного ингредиента.
Недостатками предложенного способа являются длительность процесса и применение специального оборудования, комплекс определенных условий (температура воздуха на входе 10°C, температура воздуха на выходе 28°C, скорость вращения распыляющего барабана 10000 оборотов/мин).
Наиболее близким методом является способ, предложенный в пат. РФ 2134967, МПК A01N 53/00, A01N 25/28, опубл. 27.08.1999 (1999). В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4:1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.
Недостатком метода является диспергирование в водной среде, что делает предложенный способ неприменимым для получения микрокапсул водорастворимых препаратов в водорастворимых полимерах.
Техническая задача - упрощение и ускорение процесса получения нанокапсул, уменьшение потерь при получении нанокапсул (увеличение выхода по массе).
Решение технической задачи достигается способом получения нанокапсул лекарственных растений, обладающих иммуностимулирующим действием, отличающимся тем, что в качестве оболочки нанокапсул используется высоко- или низкоэтерифицированный яблочный или цитрусовый пектин, а в качестве ядра - настойка эхинацеи.
Отличительной особенностью предлагаемого метода является при получении нанокапсул использование яблочного или цитрусового пектина в качестве оболочки частиц и настойки лекарственного растения, обладающего иммуностимулирующим действием, - в качестве ядра.
Результатом предлагаемого метода является получение нанокапсул лекарственных растений, обладающих иммуностимулирующим действием.
ПРИМЕР 1 Получение нанокапсул настойки эхинацеи, соотношение ядро : оболочка 1:3
5 мл настойки эхинацеи добавляют в суспензию 3 г высокоэтерифицированного яблочного пектина в бензоле в присутствии 0,01 г препарата Е472с (сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, причем лимонная кислота, как трехосновная, может быть этерифицирована другими глицеридами и как оксокислота - другими жирными кислотами. Свободные кислотные группы могут быть нейтрализованы натрием) в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 4 г порошка нанокапсул. Выход составил 100%.
ПРИМЕР 2 Получение нанокапсул настойки эхинацеи, соотношение ядро : оболочка 1:3
5 мл настойки эхинацеи добавляют в суспензию 3 г высокоэтерифицированного цитрусового пектина в бензоле в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 4 г порошка нанокапсул. Выход составил 100%.
ПРИМЕР 3 Получение нанокапсул настойки эхинацеи, соотношение ядро : оболочка 1:1
5 мл настойки эхинацеи добавляют в суспензию 1 г высокоэтерифицированного цитрусового пектина в бензоле в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 2 г порошка нанокапсул. Выход составил 100%.
ПРИМЕР 4 Получение нанокапсул настойки эхинацеи, соотношение ядро : оболочка 1:1
5 мл настойки эхинацеи добавляют в суспензию 3 г высокоэтерифицированного яблочного пектина в бензоле в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 2 г порошка нанокапсул. Выход составил 100%.
ПРИМЕР 5 Получение нанокапсул настойки эхинацеи, соотношение ядро : оболочка 1:3
5 мл настойки эхинацеи добавляют в суспензию 3 г низкоэтерифицированного яблочного пектина в бензоле в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 4 г порошка нанокапсул. Выход составил 100%.
ПРИМЕР 6 Получение нанокапсул настойки эхинацеи, соотношение ядро : оболочка 1:3
5 мл настойки эхинацеи добавляют в суспензию 3 г низкоэтерифицированного цитрусового пектина в бензоле в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 4 г порошка нанокапсул. Выход составил 100%.
ПРИМЕР 7 Получение нанокапсул настойки эхинацеи, соотношение ядро : оболочка 1:1
5 мл настойки эхинацеи добавляют в суспензию 1 г низкоэтерифицированного яблочного пектина в бензоле в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 2 г порошка нанокапсул. Выход составил 100%.
ПРИМЕР 8 Получение нанокапсул настойки эхинацеи, соотношение ядро : оболочка 1:1
5 мл настойки эхинацеи добавляют в суспензию 1 г низкоэтерифицированного цитрусового пектина в бензоле в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 2 г порошка нанокапсул. Выход составил 100%.
название | год | авторы | номер документа |
---|---|---|---|
Способ получения нанокапсул лекарственных растений, обладающих кардиотоническим действием в пектине | 2016 |
|
RU2642056C2 |
Способ получения нанокапсул сухого экстракта шиповника в пектине | 2016 |
|
RU2636321C1 |
Способ получения нанокапсул семян чиа (Salvia hispanica) в пектине | 2016 |
|
RU2647440C2 |
Способ получения нанокапсул витаминов в пектине | 2017 |
|
RU2654229C1 |
Способ получения нанокапсул бетулина | 2016 |
|
RU2640499C1 |
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ ЭКСТРАКТА ЗЕЛЕНОГО ЧАЯ В ПЕКТИНЕ | 2015 |
|
RU2599843C1 |
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ АДАПТОГЕНОВ В ПЕКТИНЕ | 2015 |
|
RU2590693C1 |
Способ получения нанокапсул танина | 2015 |
|
RU2606589C2 |
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ L-АРГИНИНА В ПЕКТИНЕ | 2014 |
|
RU2557903C1 |
Способ получения нанокапсул экстракта хлореллы в пектине | 2016 |
|
RU2672065C2 |
Изобретение относится в области нанотехнологии, медицины и пищевой промышленности. Способ получения нанокапсул лекарственных растений, обладающих иммуностимулирующим действием, где в качестве оболочки используют высоко- или низкоэтерифицированный яблочный или цитрусовый пектин, а в качестве ядра - настойку эхинацеи, характеризуется тем, что 5 мл настойки эхинацеи добавляют в суспензию высоко- или низкоэтерифицированного яблочного или цитрусового пектина в бензоле в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин, полученную суспензию отфильтровывают и сушат при комнатной температуре, при этом соотношение ядро : оболочка составляет 1:1 или 1:3. 8 пр.
Способ получения нанокапсул лекарственных растений, обладающих иммуностимулирующим действием, где в качестве оболочки используют высоко- или низкоэтерифицированный яблочный или цитрусовый пектин, а в качестве ядра - настойку эхинацеи, характеризующийся тем, что 5 мл настойки эхинацеи добавляют в суспензию высоко- или низкоэтерифицированного яблочного или цитрусового пектина в бензоле в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин, полученную суспензию отфильтровывают и сушат при комнатной температуре, при этом соотношение ядро:оболочка составляет 1:1 или 1:3.
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ L-АРГИНИНА В ПЕКТИНЕ | 2014 |
|
RU2557903C1 |
Солодовник В.Д | |||
Микрокапсулирование | |||
М., "Химия", 1980 | |||
Nagavarma B.V.N | |||
"Different techniques for preparation of polymeric nanoparticles", Asian Journal Pharm Clin Res, 2012, vol.5, suppl | |||
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. | 1921 |
|
SU3A1 |
Авторы
Даты
2018-03-15—Публикация
2016-09-13—Подача