Предлагаемый способ относится к области неразрушающего контроля, а именно к инфракрасной диагностике и методам теплового неразрушающего контроля.
Наиболее близким по технической сути (прототипом) к предлагаемому способу является способ тепловизионного контроля теплоизоляции протяженных трубопроводов (пат. 2386958 Российская Федерация, МПК G01N 25/00. Способ тепловизионного контроля теплоизоляции протяженных трубопроводов / Гуков В.В., Пеньков М.М., Наумчик И.В., Кухтин А.В., Тетерук Р.А., Садин Д.В., Цыганков В.В.; заявитель и патентообладатель МО РФ. - №2008123707/28; заявл. 10.06.08; опубл. 20.04.10).
Способ тепловизионного контроля теплоизоляции протяженных трубопроводов включает предварительный нагрев стенок под изоляцией для создания перепада температуры поперек слоя теплоизоляции и последующий тепловизионный контроль температурных полей на наружной поверхности теплоизоляции посредством тепловизионной камеры, которую перемещают вдоль трубопроводов в сторону источника газа наддува в соответствии с законом движения максимума температуры по длине трубопроводов.
Данный способ обеспечивает возможность контроля качества теплоизоляции протяженных трубопроводов. В тоже время его использование связано с движением камеры вдоль трубопровода, что позволяет контролировать состояние трубопровода только с одной стороны трубопровода. В противном случае необходимо использовать несколько тепловизионных камер, что значительно увеличивает трудоемкость и стоимость контроля.
Задачей изобретения является создание способа тепловизионного контроля теплоизоляции трубопроводов, обеспечивающего уменьшение трудоемкости и стоимости контроля при проведении тепловизионной съемки.
Это достигается тем, что перемещение тепловизионной камеры выполняют по винтовой линии вокруг трубопровода с частотой ее обращения, которую рассчитывают по формуле:
,
где υ - скорость перемещения максимума температурного поля на наружной поверхности теплоизоляции трубопровода, м/с;
Sк - размер термограммы по длине трубопровода, зависящий от технических характеристик тепловизионной камеры, а именно поля зрения ее объектива, мм;
k - выбранное значение перекрытия термограмм по длине трубопровода, %,
а шаг винтовой линии выбирают с учетом размера термограммы и заданного значения их перекрытия.
При проведении тепловизионного контроля теплоизоляции трубопровода перемещение тепловизионной камеры выполняется по винтовой линии вокруг трубопровода с заданной частотой ее обращения, обеспечивая совпадение положения камеры с максимумом температурного поля на наружной поверхности теплоизоляции трубопровода. При этом шаг винтовой линии P при перемещении тепловизионной камеры вокруг трубопровода обеспечивает получение перекрывающихся термограмм с учетом технических характеристик тепловизионной камеры и выбирается с учетом размера термограммы и заданного значения их перекрытия. Шагом винтовой линии при перемещении тепловизионной камеры вокруг трубопровода называется расстояние по его образующей между одноименными точками соседних витков (фиг. 1).
При тепловизионном контроле теплоизоляции трубопровода предлагается реализовать рекомендацию по 15-процентному перекрытию термограмм для исключения пропуска участков с возможными дефектами. С этой целью выбирается шаг винтовой линии при перемещении тепловизионной камеры вокруг трубопровода следующим образом:
В нашем случае выбираем P=0,925 Sк.
Связь между геометрическими параметрами винтовой линии при перемещении тепловизионной камеры вокруг трубопровода получается из рассмотрения ее развертки и соответствует законам движения винтовой пары:
где ϕ - угол наклона винтовой линии при перемещении тепловизионной камеры вокруг трубопровода;
d - наружный диаметр трубопровода.
При полном обороте тепловизионной камеры вокруг трубопровода относительное перемещение ее вдоль оси трубопровода составит величину шага винтовой линии P при перемещении тепловизионной камеры вокруг трубопровода.
Скорость перемещения максимума температурного поля на наружной поверхности теплоизоляции вдоль трубопровода определяется из формулы:
.
Тогда частота обращения тепловизионной камеры вокруг трубопровода определяется из формулы:
Перемещение камеры по винтовой линии вокруг трубопровода позволит при однократном создании перепада температуры между внутренней и внешней поверхностью трубопровода получить наиболее полную информацию о техническом состоянии теплоизоляции трубопровода.
Пример реализации предлагаемого способа представлен на фиг. 2, на которой введены следующие обозначения: 1 - трубопровод; 2 - винтовая линия вокруг трубопровода, по которой перемещается тепловизионная камера; 3 - тепловизионная камера.
Реализация способа тепловизионного контроля теплоизоляции трубопроводов происходит следующим образом. Регистрация температурных полей на наружной поверхности теплоизоляции трубопровода 1 производится тепловизионной камерой 3. Закон движения тепловой волны предопределяет и схему движения тепловизионной камеры 3 вокруг трубопровода 1 по винтовой линии 2, используя максимальную контрастность термограмм. Тепловизионная камера 3 перемещается в сторону источника газа наддува в соответствии с законом движения максимума температуры по длине трубопровода 1. Скорость движения тепловизионной камеры 3 рассчитывается с учетом формулы (3).
Предлагаемый способ обеспечивает возможность контроля качества теплоизоляции трубопроводов, а также снижение трудоемкости и стоимости проведения тепловизионного контроля. Способ позволяет получать термограммы всей поверхности теплоизоляции трубопровода при однократном испытании.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ТЕПЛОВИЗИОННОГО КОНТРОЛЯ ТЕПЛОИЗОЛЯЦИИ ПРОТЯЖЕННЫХ ТРУБОПРОВОДОВ | 2008 |
|
RU2386958C2 |
СПОСОБ ТЕПЛОВОГО НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ КРУПНОГАБАРИТНЫХ ЦИЛИНДРИЧЕСКИХ ИЗДЕЛИЙ | 2021 |
|
RU2774040C1 |
ТЕРМОГРАФИЧЕСКИЙ СПОСОБ КОНТРОЛЯ ОБЪЕКТОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2017 |
|
RU2659617C1 |
СПОСОБ ТЕПЛОВИЗИОННОГО КОНТРОЛЯ ТЕПЛОИЗОЛЯЦИИ СОСУДОВ И ТРУБОПРОВОДОВ | 2005 |
|
RU2296983C1 |
СПОСОБ МОНИТОРИНГА ТЕХНИЧЕСКОГО СОСТОЯНИЯ ТРУБОПРОВОДОВ НАДЗЕМНОЙ ПРОКЛАДКИ В УСЛОВИЯХ ВЕЧНОЙ МЕРЗЛОТЫ | 2015 |
|
RU2571497C1 |
СПОСОБ ИНТЕЛЛЕКТУАЛЬНОГО ЭНЕРГОСБЕРЕЖЕНИЯ НА ОСНОВЕ ИНСТРУМЕНТАЛЬНОГО МНОГОПАРАМЕТРОВОГО МОНИТОРИНГОВОГО ЭНЕРГЕТИЧЕСКОГО АУДИТА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2011 |
|
RU2516203C2 |
ТРИАНГУЛЯЦИОННЫЙ СПОСОБ ПОСТРОЕНИЯ ДВУМЕРНОГО РАДИОЛОКАЦИОННОГО ИЗОБРАЖЕНИЯ ЦЕЛИ В РЛС СОПРОВОЖДЕНИЯ С ИНВЕРСНЫМ СИНТЕЗИРОВАНИЕМ АПЕРТУРЫ. | 1995 |
|
RU2099742C1 |
УСТРОЙСТВО ДЛЯ ТЕПЛОВОГО НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ КРУПНОГАБАРИТНЫХ ЦИЛИНДРИЧЕСКИХ ИЗДЕЛИЙ | 2018 |
|
RU2697437C1 |
ТЕРМОГРАФИЧЕСКИЙ СПОСОБ КОНТРОЛЯ ОБЪЕКТОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2017 |
|
RU2670186C1 |
СПОСОБ ИЗМЕРЕНИЯ ЭФФЕКТИВНОЙ ПОВЕРХНОСТИ РАССЕЯНИЯ ОБЪЕКТОВ | 2001 |
|
RU2210789C2 |
Изобретение относится к области неразрушающего контроля, а именно к инфракрасной диагностике и тепловизионным методам контроля. При проведении тепловизионного контроля теплоизоляции трубопровода движение тепловизионной камеры выполняют по винтовой линии вокруг трубопровода с частотой ее обращения, зависящей от изменения максимума температурного поля на наружной поверхности теплоизоляции трубопроводов в соответствии с законом движения максимума температуры газа наддува по длине трубопровода. При этом шаг винтовой линии при перемещении тепловизионной камеры вокруг трубопровода должен обеспечивать получение перекрывающихся термограмм с учетом технических характеристик тепловизионной камеры. Технический результат – повышение достоверности и информативности получаемых данных за счет обеспечения получения термограммы всей поверхности теплоизоляции трубопровода при однократном испытании. 2 ил.
Способ тепловизионного контроля теплоизоляции трубопроводов, включающий предварительный нагрев стенок трубопровода под изоляцией для создания перепада температуры поперек слоя теплоизоляции и последующий тепловизионный контроль температурных полей на наружной поверхности теплоизоляции посредством тепловизионной камеры, которую перемещают вдоль трубопровода в сторону источника газа наддува в соответствии с законом движения максимума температуры по длине трубопровода, отличающийся тем, что перемещение тепловизионной камеры выполняют по винтовой линии вокруг трубопровода с частотой ее обращения, которую рассчитывают по формуле:
где υ - скорость перемещения максимума температурного поля на наружной поверхности теплоизоляции трубопровода, м/с;
Sк - размер термограммы по длине трубопровода, зависящий от технических характеристик тепловизионной камеры, а именно поля зрения ее объектива, мм;
k - выбранное значение перекрытия термограмм по длине трубопровода, %,
а шаг винтовой линии выбирают с учетом размера термограммы и заданного значения их перекрытия.
СПОСОБ ТЕПЛОВИЗИОННОГО КОНТРОЛЯ ТЕПЛОИЗОЛЯЦИИ ПРОТЯЖЕННЫХ ТРУБОПРОВОДОВ | 2008 |
|
RU2386958C2 |
СПОСОБ ТЕПЛОВИЗИОННОГО КОНТРОЛЯ ТЕПЛОИЗОЛЯЦИИ СОСУДОВ И ТРУБОПРОВОДОВ | 2005 |
|
RU2296983C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ТРАНСПОРТНЫХ ТЕПЛОВЫХ ПОТЕРЬ В ПОДЗЕМНОЙ СЕТИ ТЕПЛОСНАБЖЕНИЯ В ЭКСПЛУАТАЦИОННОМ РЕЖИМЕ | 2014 |
|
RU2549564C1 |
СПОСОБ КОНТРОЛЯ СОСТОЯНИЯ МАГИСТРАЛЬНОГО ТРУБОПРОВОДА | 1999 |
|
RU2174645C2 |
Способ и устройство для испытания металлов | 1928 |
|
SU11371A1 |
CN 102927448 A, 13.02.2013. |
Авторы
Даты
2017-01-11—Публикация
2015-07-14—Подача