СПОСОБ ПОЛУЧЕНИЯ МАТЕРИАЛА ФАЗОВОЙ ПАМЯТИ Российский патент 2017 года по МПК G11C11/00 

Описание патента на изобретение RU2610058C1

Изобретение относится к получению халькогенидных полупроводниковых сплавов, используемых в устройствах энергонезависимой фазовой памяти. Материалы фазовой памяти обладают способностью к быстрым и обратимым фазовым переходам между кристаллическим и аморфным состояниями, что используется в перезаписываемых оптических дисках.

Известно техническое решение по патенту РФ №2216054, кл. G11C 11/00, 2000 г., в котором используется материал памяти с фазовым переходом из состояния с высоким сопротивлением в состояние с низким сопротивлением, при этом материал с фазовым переходом содержит один или несколько элементов, выбранных из группы, состоящей из Те, Se, Ge, Sb, Bi, Pb, Sn, As, S, Si, P, О и их смесей или их сплавов. Однако в данном техническом решении нет конкретного способа получения материала фазовой памяти.

Многочисленные исследования показали, что перспективными материалами для устройств фазовой памяти последнего поколения являются халькогениды тройной системы Ge-Sb-Те, а именно соединения на линии квазибинарного разреза GeTe-Sb2Te3, применяемые в виде наноразмерных тонких пленок.

Известно техническое решение по патенту РФ №1208848, кл. С30В 11/06, 1984 г., в котором изложен способ получения полупроводникового соединения халькогенидов меди, включающий взаимодействие расплава металлических элементов, расположенных в одном конце, с парами халькогена, расположенного в другом конце, в запаянной вакуумированной кварцевой ампуле, при этом нагрев зон производят до разных температур, с последующими выдержкой и охлаждением в режиме выключенной печи. Однако данное техническое решение сложно в осуществлении из-за наличия разных зон нагрева.

Известно техническое решение по патенту РФ №2458190, кл. С30В 13/00, 2011 г., в котором описан способ получения халькогенида золота и серебра, включающий приготовление смеси из исходных компонентов, размещение ее в вакуумированной запаянной ампуле, нагревание с определенной скоростью, после чего расплав охлаждают также с определенной скоростью. Однако данный способ не пригоден для получения материала фазовой памяти, т.к. не содержит компонентов, требуемых для получения материала, используемого в устройствах фазовой памяти последнего поколения.

Известно техническое решение «Способ получения термоэлектрического материала на основе халькогенидов сурьмы и/или висмута» по патенту РФ №1651594, кл. С30В 13/00, 1989 г, в котором исходные материалы подвергают дополнительной очистке, а после взвешивания подготовленную шихту загружают в кварцевую ампулу с разными по объему частями. В ампуле создают вакуум, соответствующий давлению 10-3 Торр, запаивают ее и помещают во вращающуюся печь, затем нагревают, проводят синтез, после чего проводят закалку, быстро опуская ампулу в воду. При необходимости в состав шихты вводят легирующие вещества, например бромид висмута. Однако данный способ является сложным и не рациональным для получения материала фазовой памяти.

Наиболее близким техническим решением является «Способ получения термоэлектрического материала р-типа» по патенту №2470414, кл. H01L 35/34, 2011 г. Способ включает синтез твердого раствора путем сплавления взятых в стехиометрическом соотношении исходных компонентов в запаянной кварцевой ампуле, наполненной аргоном, нагрев ампулы, помещенной в качающуюся печь, при температуре, превышающей на 150°-200° температуру плавления твердого раствора халькогенидов висмута и сурьмы, последующее охлаждение расплава со скоростью 200-250°C/мин, последующее измельчение, спекание в вакууме и экструзию в стержни, дальнейший отжиг стержней при температуре 340-370°C в течение 1-5 суток. Однако данный способ является сложным по технологическому процессу и не приемлем для получения материала фазовой памяти, так как требует дополнительной очистки применяемого для синтеза аргона, что значительно удорожает и усложняет способ.

Технической задачей настоящего изобретения является разработка способа синтеза легированного халькогенидного полупроводника с улучшенным оптическим контрастом для использования в устройствах фазовой памяти последнего поколения, конкретно перезаписываемых оптических дисках.

Техническим результатом при использовании предложенного способа является получение материала фазовой памяти с увеличенным оптическим контрастом, что улучшает функциональные характеристики перезаписываемых оптических дисков.

Технический результат достигается тем, что в предлагаемом способе получения материала фазовой памяти, включающем измельчение и смешивание компонентов, взятых в стехиометрическом соотношении, синтез в вакуумированной кварцевой ампуле, характеризующимся тем, что в качестве исходных компонентов для синтеза используют бинарные соединения GeTe и Sb2Te3 в весовом отношении, соответствующем стехиометрическому соотношению соединения Ge2Sb2Te5, синтезируемом из Ge, Sb, Te полупроводниковой чистоты, выбираемых из следующей пропорции: 66,7 мол. % GeTe и 33,3 мол.% Sb2Te3, при этом в синтезируемый сплав добавляют олово (Sn) в количестве 0,5-3 мас.%, после чего подготовленную шихту помещают в кварцевую ампулу, которую затем откачивают до остаточного давления 10-5 мм рт.ст. и отпаивают, затем производят ступенчатый нагрев ампулы до температуры 500°C со скоростью 3°-4°C в мин, выдерживают ампулу при температуре 500°C в течение 4-6 часов, с последующим нагревом до температуры 750°C со скоростью 1°-2°C в мин, при этом в процессе нагрева ампулу с материалом вращают вокруг своей меньшей оси со скоростью 1-2 оборота в минуту в течение 4 часов, после чего происходит остывание ампулы в выключенной печи с последующим отжигом синтезированного материала при температуре 500°C в течение 12 часов, затем сплав используют для получения материала фазовой памяти, для чего сплав измельчают в порошок с размером зерен 30-50 мкм, после чего получают тонкие пленки материала фазовой памяти с помощью термического испарения в вакууме синтезированного материала, при этом во время осаждения тонких пленок остаточное давление в камере составляет 2⋅10-3 мм рт.ст., а температура подложки не превышает 50°C, что позволяет получать тонкие пленки в аморфном состоянии.

Сущность изобретения заключается в следующем.

Халькогенидные сплавы сложного состава широко используются в многочисленных устройствах микроэлектроники и оптоэлектроники, в том числе и тонкопленочные халькогениды системы Ge-Sb-Te, а именно соединения, лежащие на линии квазибинарного разреза GeTe-Sb2Te3. В связи с этим в качестве исходных материалов для синтеза Ge2Sb2Te5 используются соединения GeTe и Sb2Te3 в весовом отношении, соответствующем стехиометрическому соединению Ge2Sb2Te5. Исходные компоненты Ge, Sb, Те для синтеза выбирают полупроводниковой степени чистоты с содержанием основного вещества не менее 99,99 мас. %. Для синтеза выбирают 66,7 мол. % GeTe и 33,3 мол.% Sb2Te3, при этом в шихту добавляют олово в количестве 0,5-3 мас.%. Далее помещают шихту в кварцевую ампулу, вакуумируют до остаточного давления 10-5 мм рт.ст. и запаивают. Перед размещением шихты ампулу предварительно подвергают обработке с целью удаления посторонних примесей на стенках ампулы. Для отмывки ампулы применяют кальценированную соду, обработку царской водкой в течение 6-8 часов, после чего ампулу многократно промывают дистиллированной водой и сушат при температуре 200°C в сушильном шкафу. Запайка кварцевых ампул производится любым известным способом, например при помощи горелки с пропан-кислородным пламенем. Далее производят ступенчатый нагрев ампул до 500°C со скоростью 3-4°C/мин, что исключает разрушение ампул вследствие высокого давления паров халькогена. После этого ампулу выдерживают при температуре 500°C в течение 4-6 часов, а после выдержки температуру поднимают непрерывно до 750°C со скоростью 1-2°C/мин. Данная температура обеспечивает проведение химической реакции. В течение всего процесса температура контролируется платина-платинородиевой термопарой. Для обеспечения гомогенизации расплава проводят непрерывное вращение ампулы, причем вращение осуществляют вокруг меньшей оси ампулы со скоростью 1 -2 оборота в минуту в течение не менее 4 часов, в результате чего получают сплав высокой однородности. Далее производят остывание ампулы в выключенной печи, после чего на заключительной стадии производят отжиг синтезированного материала при температуре 500°C в течение 12 часов. После этого сплав измельчают в порошок с размером зерен 30-50 мкм. Тонкие пленки материала фазовой памяти получают с помощью термического испарения в вакууме синтезированного материала, при этом во время осаждения тонких пленок остаточное давление в камере составляет 2⋅10-3 мм рт.ст., а температура подложки не превышает 50°C, что позволяет получать тонкие пленки в аморфном состоянии.

Материал, полученный вышеописанным способом, был использован для получения тонких пленок, у которых были исследованы оптические характеристики. Было установлено, что увеличение оптического контраста составляет около 18% при длине волны λ=400 нм и 54% при длине волны λ=650 нм при использовании легированного материала фазовой памяти, полученного предложенным способом, по сравнению с нелегированным материалом. Для аморфных пленок, легированных оловом, показатель преломления увеличивается по сравнению с чистой аморфной пленкой GST225 (фиг. 1). Значения n варьируются в диапазоне 2,7-5,3. Максимальное значение n достигает 5,3 при λ=900 нм для случая легирования 3 мас. % олова (фиг. 1, кривая 4).

Введение олова приводится к увеличению коэффициента экстинкции k для аморфных пленок (фиг. 2). При значении длины волны λ~610 нм происходит инверсия поведения, т.е. в высокочастотной области k увеличивается с ростом концентрации олова, а в низкочастотной области он соответственно уменьшается. Наблюдается увеличение значения k при переходе из аморфной в кристаллическую фазу. Для случая легированных 0,5 и 1 мас. % Sn положения максимума значения k не изменилось по сравнению с чистой пленкой. Совокупность полученных данных указывает на высокую вероятность улучшения функциональных характеристик перезаписываемых оптических дисков при использовании описанного материала фазовой памяти.

Похожие патенты RU2610058C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ АМОРФНЫХ ПЛЕНОК ХАЛЬКОГЕНИДНЫХ СТЕКЛООБРАЗНЫХ ПОЛУПРОВОДНИКОВ С ЭФФЕКТОМ ФАЗОВОЙ ПАМЯТИ 2016
  • Тимошенков Сергей Петрович
  • Шерченков Алексей Анатольевич
  • Коробова Наталья Егоровна
  • Лазаренко Петр Иванович
  • Бабич Алексей Вальтерович
RU2631071C2
СПОСОБ ПОЛУЧЕНИЯ АМОРФНЫХ ПЛЕНОК ХАЛЬКОГЕНИДНЫХ СТЕКЛООБРАЗНЫХ ПОЛУПРОВОДНИКОВ С ЭФФЕКТОМ ФАЗОВОЙ ПАМЯТИ 2015
  • Тимошенков Сергей Петрович
  • Шерченков Алексей Анатольевич
  • Коробова Наталья Егоровна
  • Лазаренко Петр Иванович
  • Калугин Виктор Владимирович
  • Бабич Алексей Вальтерович
RU2609764C1
Способ получения термоэлектрического материала р-типа проводимости на основе твердых растворов BiTe-SbTe 2017
  • Панин Юрий Васильевич
  • Калинин Юрий Егорович
  • Дроздов Игорь Геннадьевич
  • Иванов Александр Сергеевич
RU2683807C1
СПОСОБ ПОЛУЧЕНИЯ ОСОБО ЧИСТЫХ ХАЛЬКОГЕНИДНЫХ СТЕКОЛ, СОДЕРЖАЩИХ ГАЛЛИЙ 2021
  • Суханов Максим Викторович
  • Вельмужов Александр Павлович
  • Тюрина Елизавета Александровна
  • Благин Роман Дмитриевич
RU2770494C1
СПОСОБ ПОЛУЧЕНИЯ ТЕРМОЭЛЕКТРИЧЕСКОГО МАТЕРИАЛА p-ТИПА НА ОСНОВЕ ТВЕРДЫХ РАСТВОРОВ BiTe-SbTe 2011
  • Драбкин Игорь Абрамович
  • Каратаев Владимир Викторович
  • Лаврентьев Михаил Геннадьевич
  • Освенский Владимир Борисович
  • Пархоменко Юрий Николаевич
  • Сорокин Александр Игоревич
RU2470414C1
ОПТИЧЕСКОЕ УСТРОЙСТВО ДЛЯ ПЕРЕКЛЮЧЕНИЯ ПЕРИОДИЧЕСКОГО РИСУНКА НА ПОВЕРХНОСТИ АМОРФНЫХ ТОНКИХ ПЛЕНОК ФАЗОПЕРЕМЕННЫХ ХАЛЬКОГЕНИДНЫХ МАТЕРИАЛОВ 2023
  • Глухенькая Виктория Борисовна
  • Смаев Михаил Петрович
  • Пестов Григорий Николаевич
  • Лазаренко Петр Иванович
  • Сапрыкин Дмитрий Леонидович
  • Михайлова Мария Сергеевна
RU2825198C1
СПОСОБ ПРИГОТОВЛЕНИЯ ШИХТЫ ДЛЯ ПОЛУЧЕНИЯ ТВЕРДЫХ РАСТВОРОВ ХАЛЬКОГЕНИДОВ СВИНЦА И ОЛОВА ПАРОФАЗНЫМИ МЕТОДАМИ 1997
  • Бестаев М.В.
  • Махин А.В.
  • Мошников В.А.
  • Томаев В.В.
RU2155830C2
СПОСОБ ИЗГОТОВЛЕНИЯ КВАРЦЕВЫХ КОНТЕЙНЕРОВ 2008
  • Аверичкин Павел Андреевич
  • Левонович Борис Наумович
  • Пархоменко Юрий Николаевич
  • Шлёнский Алексей Александрович
  • Шматов Николай Николаевич
RU2370568C1
СВЕТОЧУВСТВИТЕЛЬНЫЙ МАТЕРИАЛ 1990
  • Герке Р.Р.
  • Дмитриков П.А.
  • Крыжановский И.И.
  • Михайлов М.Д.
  • Юсупов И.Ю.
  • Яковук О.А.
RU2021624C1
ЛЕГИРОВАННЫЕ ТЕЛЛУРИДЫ СВИНЦА ДЛЯ ТЕРМОЭЛЕКТРИЧЕСКОГО ПРИМЕНЕНИЯ 2007
  • Хаасс Франк
RU2413042C2

Иллюстрации к изобретению RU 2 610 058 C1

Реферат патента 2017 года СПОСОБ ПОЛУЧЕНИЯ МАТЕРИАЛА ФАЗОВОЙ ПАМЯТИ

Изобретение относится к получению халькогенидных ⋅полупроводниковых сплавов, используемых в устройствах энергонезависимой фазовой памяти. Предложен способ получения материала фазовой памяти, включающий измельчение и смешивание исходных компонентов, выбираемых из следующей пропорции:: 66,7 мол. % GeTe и 33,3 мол. % Sb2Te3, при этом в шихту добавляют олово (Sn) в количестве 0,5-3 мас. %, после чего подготовленную шихту помещают в кварцевую ампулу, которую затем откачивают до остаточного давления 10-5 мм рт.ст. и отпаивают, затем производят ступенчатый нагрев ампулы до температуры 500°C со скоростью 3-4°C в мин, выдерживают ампулу с материалом при температуре 500°C в течение 4-6 часов с последующим нагревом до температуры 750°C со скоростью 1-2°C в мин, при этом в процессе нагрева ампулу с материалом вращают вокруг своей меньшей оси со скоростью 1-2 оборота в минуту в течение 4 часов. Далее ампула остывает в выключенной печи с последующим отжигом синтезированного материала при температуре 500°C в течение 12 часов, после чего материал используется для получения материала фазовой памяти. Тонкие пленки материала фазовой памяти получали с помощью вакуум-термического испарения синтезированного материала. Во время осаждения тонких пленок остаточное давление в камере составляло 2⋅10-3 мм рт.ст., температура подложки не превышала 50°C, что позволяло получить тонкие пленки в аморфном состоянии. Изобретение обеспечивает получение материала фазовой памяти с увеличенным оптическим контрастом, что улучшает функциональные характеристики перезаписываемых оптических дисков. 2 ил.

Формула изобретения RU 2 610 058 C1

1. Способ получения материала фазовой памяти, включающий измельчение и смешивание компонентов, взятых в стехиометрическом соотношении, синтез в вакуумированной кварцевой ампуле, отличающийся тем, что в качестве исходных компонентов для синтеза используют бинарные соединения GeTe и Sb2Te3 в весовом отношении, соответствующем стехиометрическому соединению Ge2Sb2Te3, синтезируемых из Ge, Sb, Те полупроводниковой степени чистоты, взятых в следующей пропорции: 66,7 мол. % GeTe и 33,3 мол. % Sb2Te3, при этом в синтезируемый сплав добавляют олово (Sn) в количестве 0,5-3 мас. %, после чего подготовленную шихту помещают в кварцевую ампулу, которую затем откачивают до остаточного давления 10-5 мм рт.ст. и отпаивают, затем производят ступенчатый нагрев ампулы до температуры 500°С со скоростью 3-4°С в мин, выдерживают ампулу при температуре 500°С в течение 4-6 часов с последующим нагревом до температуры 750°С со скоростью 1-2°С в мин, при этом в процессе нагрева ампулу с материалом вращают вокруг своей меньшей оси со скоростью 1-2 оборота в минуту в течение 4 часов, после чего происходит остывание ампулы в выключенной печи с последующим отжигом синтезированного материала при температуре 500°С в течение 12 часов, затем сплав используют для получения материала фазовой памяти, для чего сплав измельчают в порошок с размером зерен 30-50 мкм, из которого в дальнейшем получают тонкие пленки материала фазовой памяти с помощью термического испарения в вакууме синтезированного материала, при этом во время осаждения тонких пленок остаточное давление в камере составляет 2⋅10-3 мм рт.ст., а температура подложки не превышает 50°С, что позволяет получать тонкие пленки в аморфном состоянии.

Документы, цитированные в отчете о поиске Патент 2017 года RU2610058C1

Способ защиты переносных электрических установок от опасностей, связанных с заземлением одной из фаз 1924
  • Подольский Л.П.
SU2014A1
Изложница с суживающимся книзу сечением и с вертикально перемещающимся днищем 1924
  • Волынский С.В.
SU2012A1
УНИВЕРСАЛЬНЫЙ ЭЛЕМЕНТ ПАМЯТИ С СИСТЕМАМИ, ИСПОЛЬЗУЮЩИМИ ЭТОТ ЭЛЕМЕНТ, СПОСОБ И УСТРОЙСТВО ДЛЯ СЧИТЫВАНИЯ, ЗАПИСИ И ПРОГРАММИРОВАНИЯ УНИВЕРСАЛЬНОГО ЭЛЕМЕНТА ПАМЯТИ 2000
  • Овшинский Стэнфорд Р.
  • Пашмаков Бойл
RU2216054C2
СПОСОБ ПОЛУЧЕНИЯ ТЕРМОЭЛЕКТРИЧЕСКОГО МАТЕРИАЛА p-ТИПА НА ОСНОВЕ ТВЕРДЫХ РАСТВОРОВ BiTe-SbTe 2011
  • Драбкин Игорь Абрамович
  • Каратаев Владимир Викторович
  • Лаврентьев Михаил Геннадьевич
  • Освенский Владимир Борисович
  • Пархоменко Юрий Николаевич
  • Сорокин Александр Игоревич
RU2470414C1

RU 2 610 058 C1

Авторы

Козюхин Сергей Александрович

Варгунин Александр Иванович

Шерченков Алексей Анатольевич

Лазаренко Петр Иванович

Бабич Алексей Вальтерович

Даты

2017-02-07Публикация

2015-12-04Подача