СПОСОБ ПОЛУЧЕНИЯ ТЕРМОРАСШИРЕННОГО ГРАФИТА Российский патент 2017 года по МПК C01B31/04 C04B35/536 

Описание патента на изобретение RU2610596C1

Область техники

Изобретение относится к получению терморасширенного графита (ТРГ) из интеркалированного по нитратной технологии графита (синонимы: окисленного нитрата графита; гидролизованного нитрата графита) и может найти применение в производстве уплотнительных материалов, низкоплотных теплораспределяющих материалов, сорбентов и другой продукции на основе ТРГ.

Предшествующий уровень техники

Гидролизованный нитрат графита представляет собой нестехиометрический аддукт, состоящий из дефектного графита, высших ступеней нитрата графита, остаточной азотной кислоты, воды. Его получают гидролизом нитрата графита II-IV ступеней.

При последующем нагреве в атмосфере продуктов сгорания жидкого или газообразного топлива на воздухе вышеперечисленные вещества разлагаются с получением пенографита и вредных газообразных продуктов (NO, NO2, СО, СО2).

Основными методами очистки газообразных выбросов от окислов азота являются некаталитический и каталитический дожиг в присутствии восстановителя. Последний отличается более низкой температурой реакции и в целом меньшими количествами остаточных газов (см. Открытая информационная система «Наилучшие доступные перспективные природоохранные технологии в энергетике России»).

http://osi.ecopower.ru/ru/2010-10-18-10-35-22/itemlist/category/50-113-%D0%BE%D1%87%D0%B8%D1%81%D1%82%D0%BA%D0%B0-%D0%B4%D1%8B%D0%BC%D0%BE%D0%B2%D1%8B%D1%85-%D0%B3%D0%B0%D0%B7%D0%BE%D0%B2-%D0%BE%D1%82-%D0%BE%D0%BA%D1%81%D0%B8%D0%B4%D0%BE%D0%B2-%D0%B0%D0%B7%D0%BE%D1%82%D0%B0-%D0%BA%D0%BE%D1%82%D0%BB%D0%B5%D1%80-%D0%B2%D 1%80-%D0%BE%D0%B0%D0%BE-%D0%B2%Dl%82%D0%B8.html

Восстановительный агент, в качестве которого обычно применяют аммиак или мочевину, инжектируется в поток дымовых газов до катализатора. Вблизи поверхности катализатора в диапазоне температур 170-510°С происходят с разной степенью интенсивности восстановительные реакции, в результате которых оксиды азота переходят в молекулярный азот. При использовании аммиака основные реакции имеют вид:

4NO+4NH3+O2=4N2+6H2O;

6NO2+8NH3=7N2+12H2O

Если используется более дорогой реагент, но в то же время более безопасный - мочевина, то восстановление происходит по реакциям:

4NO+2(NH2)2CO+2Н2O+O2=4N2+6Н2O+2СO2;

6NO2+4(NH2)2CO+4Н2O=7N2+12Н2O+4СO2

Данные методы позволяют уменьшить количество вредных выбросов до 80%, однако требуют дополнительного дорогостоящего оборудования и катализатора. При этом необходимо использовать либо опасный в производстве аммиак, либо коррозионно-активный раствор мочевины.

Кроме методов традиционной очистки от окислов азота делались попытки избавиться от окислов азота путем оптимизации параметров нагрева, при котором осуществлялось термическое расширение гидрализованного нитрата графита.

Из патента RU 2525488 на способ изготовления низкоплотных материалов известен способ получения терморасширенного графита, включающий нагрев частиц гидролизованного нитрата графита в атмосфере продуктов сгорания жидкого или газообразного топлива на воздухе с коэффициентом избытка воздуха в пересчете на топливо λ=0,8-1,1.

Данный способ является наиболее близким к предложенному.

Параметры нагрева и состав атмосферы в известном способе подбирались таким образом, что в получаемом ТРГ отсутствовали кислотные коррозионно-активные по отношению к металлу примеси, соответственно водная вытяжка ТРГ характеризовалась нейтральным или щелочным значениями рН, увеличивался выход по углероду, а полученный из ТРГ низкоплотный материал обладал высокими прочностными и упругими свойствами.

Однако известный способ обладает высокой трудоемкостью, обусловленной необходимостью регулирования и поддержания заданной удельной энергии нагрева, а при его осуществлении в процессе термического расширения неконтролируемо выделяется большое количество газов, которые загрязняют атмосферу.

Раскрытие изобретения

Задачей изобретения является уменьшение газовыделения (окислов азота и углерода) при термическом расширении гидролизованного нитрата графита.

Поставленная задача решается способом получения терморасширенного графита, включающим нагрев частиц гидролизованного нитрата графита до температур термического расширения и выдержку частиц при этих температурах для термического расширения, в соответствии с которым перед нагревом частицы гидролизованного нитрата графита смешивают с гранулированными частицами карбамида в количестве от 5 до 20 масс. %, а термическое расширение проводят при температуре не ниже 1000°С.

В частных воплощениях изобретения поставленная задача решается тем, что в способе термическое расширение проводят при температуре 1100°С и выше.

В наилучших воплощениях изобретения в качестве гранулированных частиц карбамида используют частицы с фракцией менее 1 мм.

Сущность изобретения состоит в следующем.

Для уменьшения выделения газов при вспенивании гидролизованного нитрата графита его смешивают с гранулированным карбамидом в заявленном количестве, а вспенивание осуществляют при температурах выше 1000°С.

Для достижения технического результата важны все эти признаки в совокупности.

Введение карбамида позволяет осуществить при вспенивании нитратов графита реакции, приводящие к уменьшению образующихся при вспенивании газов. При этом если содержание карбамида будет меньше заявленных значений, то его количества будет недостаточно для осуществления этих реакций. При увеличении количества карбамида выше заявленных значений дальнейшего уменьшения выделяющихся газов не происходит. Кроме того, для термического расширения графита требуются большие температуры.

Карбамид должен находиться в гранулируемом состоянии. Только в этом случае может быть реализован декларируемый результат. Добавление карбамида в виде водного раствора приводит к трудностям при дозировании окисленного графита в печь. Также его влияние на уменьшение газовыделения при вспенивании будет ничтожно по следующим причинам: значительная часть мощности печи будет расходоваться на нагрев и испарение воды в силу ее высокой теплоемкости, поэтому локальная температура термического расширения будет меньше необходимой для проведения эффективного восстановления.

Фракционный состав карбамида не так важен - карбамид устраняет газы с любым фракционным составом гранул.

Однако использование гранул карбамида с фракцией менее 1 мм позволяет получить более равномерный состав смеси частиц гидролизованного нитрата графита с карбамидом, что приведет к резкому уменьшению выделившихся газов при термическом расширении.

Немаловажным аспектом изобретения является температура термического расширения нитратного графита.

Общеизвестно, что гидролизованные нитраты графита обладают широким интервалом температур термического расширения - вспенивание возможно начиная с температур 200°С и выше. Температуры вспенивания широко раскрыты в предшествующем уровне техники.

Однако для решения поставленной задачи необходимы достаточно высокие температуры термического расширения - процесс уменьшения газообразования при вспенивании может быть запущен с температур термического расширения более 1000°С. Уменьшение температуры расширения, например, до 800°С приводит к снижению эффективности восстановления в 2 раза (рисунок 1), а также к росту выделения угарного газа более чем в 3 раза (рисунок 2). Верхний предел температур ограничен только возможностями устройств, в которых происходит термическое расширение графита, однако для некоторых типов устройств такие температуры могут быть ограничены. Например, если термическое расширение осуществляется в электрических печах, то целесообразно проводить термическое расширение нитрата графита при температурах 1000-1100°С.

Для проведения термического расширения с использованием газопламенных горелок возможно температуры термического расширения от 1100°С и выше. При этом достигается не только эффективное удаление окислов азота и углерода, но и дополнительный результат - растет производительность способа получения термически расширенного графита за счет уменьшения времени на вспенивание, а также удешевляется процесс: денежные затраты на достижение одной и той же мощности нагрева будут меньше для газового нагрева.

Изобретение осуществляется следующим образом.

Для осуществления способа брали гидролизованный нитрат графита, полученный путем химического или электрохимического взаимодействия природного графита с азотной кислотой и последующего гидролиза полученных интеркалированных соединений графита.

Данный гидролизованный нитрат графита смешивали с 5-20 масс. % гранулированного карбамида с фракцией менее 1 мм и подвергали нагреву до 800, 1000 или 1100°С. Нагрев проводили в электрической печи трубчатого типа. Для вспенивания смеси осуществляли ее выдержку в печи.

Образующиеся при вспенивании газы удаляли.

В результате получали ТРГ с насыпной плотностью 1-5 г/л, содержанием углерода более 99,7% и рН=7-8.

Было изучено газовыделение при термическом разложении окисленного графита с добавкой мочевины в массовом соотношении 5, 10 и 20% (соответственно образцы OG-5, OG-10 и OG-20) при температурах от 800 до 1100°С (таблица 1).

Добавление мочевины к окисленному графиту приводит к росту количества выделяющегося Со при вспенивании при 800°С, однако при вспенивании при температурах выше 1000°С его количества резко уменьшаются.

Самое значительное сокращение выделяющихся окислов азота наблюдалось для образца с максимальным содержанием мочевины, причем оно тем больше, чем выше температура термического расширения. Для образца OG-20 зафиксировано падение выделения NOx до 72% при 1100°С и всего 58% при 800°С.

Похожие патенты RU2610596C1

название год авторы номер документа
СПОСОБ ИЗГОТОВЛЕНИЯ НИЗКОПЛОТНЫХ МАТЕРИАЛОВ И НИЗКОПЛОТНЫЙ МАТЕРИАЛ 2013
  • Сорокина Наталья Евгеньевна
  • Малахо Артем Петрович
  • Филимонов Станислав Владимирович
  • Павлов Александр Алексеевич
  • Авдеев Виктор Васильевич
RU2525488C1
СПОСОБ ИЗГОТОВЛЕНИЯ ГРАФИТОВОЙ ФОЛЬГИ 2023
  • Филимонов Станислав Владимирович
  • Иванов Андрей Владимирович
  • Ефимов Дмитрий Васильевич
  • Пантюхин Михаил Леонидович
  • Муханов Владимир Анатольевич
  • Авдеев Виктор Васильевич
RU2811287C1
СПОСОБ ПЕРЕРАБОТКИ ОТХОДОВ ПРОИЗВОДСТВА ГИБКОЙ ГРАФИТОВОЙ ФОЛЬГИ И ПРОДУКЦИИ НА ЕЕ ОСНОВЕ 2018
  • Калашник Наталья Александровна
  • Калашник Александр Владимирович
  • Малахо Артем Петрович
  • Филимонов Станислав Владимирович
  • Ионов Сергей Геннадьевич
RU2684383C1
ВЫСОКОТЕМПЕРАТУРНЫЙ УГЛЕГРАФИТОВЫЙ ТЕПЛОИЗОЛЯЦИОННЫЙ МАТЕРИАЛ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2009
  • Сорокина Наталья Евгеньевна
  • Свиридов Александр Афанасьевич
  • Селезнев Анатолий Николаевич
  • Матвеев Андрей Трофимович
  • Авдеев Виктор Васильевич
  • Годунов Игорь Андреевич
  • Ионов Сергей Геннадьевич
RU2398738C1
ГРАФИТОВАЯ ФОЛЬГА, ЛИСТОВОЙ МАТЕРИАЛ НА ЕЕ ОСНОВЕ, УПЛОТНЕНИЕ И СПОСОБ ПОЛУЧЕНИЯ 2018
  • Иванов Андрей Владимирович
  • Максимова Наталья Владимировна
  • Шорникова Ольга Николаевна
  • Филимонов Станислав Владимирович
  • Малахо Артем Петрович
  • Авдеев Виктор Васильевич
RU2706103C1
УГЛЕРОДНАЯ ТЕПЛОРАСПРЕДЕЛЯЮЩАЯ ПЛИТА ДЛЯ ИЗГОТОВЛЕНИЯ ПОТОЛОЧНЫХ И НАСТЕННЫХ СИСТЕМ НАГРЕВА И КОНДИЦИОНИРОВАНИЯ 2018
  • Иванов Андрей Владимирович
  • Максимова Наталья Владимировна
  • Шорникова Ольга Николаевна
  • Филимонов Станислав Владимирович
  • Малахо Артем Петрович
  • Авдеев Виктор Васильевич
RU2702431C1
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННЫХ УГЛЕРОДНЫХ МАТЕРИАЛОВ 2008
  • Селезнев Анатолий Николаевич
  • Афанасов Иван Михайлович
  • Свиридов Александр Афанасьевич
  • Сорокина Наталья Евгеньевна
  • Авдеев Виктор Васильевич
RU2377223C1
СПОСОБ ИЗГОТОВЛЕНИЯ ПЕНОГРАФИТА, МОДИФИЦИРОВАННОГО МЕЛКОДИСПЕРСНЫМИ ЧАСТИЦАМИ МЕТАЛЛОВ ИЛИ СПЛАВОВ, И ПЕНОГРАФИТ 2023
  • Муханов Владимир Анатольевич
  • Муравьёв Александр Дмитриевич
  • Иванов Андрей Владимирович
  • Мордкович Владимир Залманович
  • Чеботарев Сергей Николаевич
  • Авдеев Виктор Васильевич
RU2817021C1
СПОСОБ ПОЛУЧЕНИЯ ТЕРМОРАСШИРЕННОГО ГРАФИТА, ТЕРМОРАСШИРЕННЫЙ ГРАФИТ И ФОЛЬГА НА ЕГО ОСНОВЕ 2011
  • Сорокина Наталья Евгеньевна
  • Малахо Артем Петрович
  • Филимонов Станислав Владимирович
  • Авдеев Виктор Васильевич
  • Годунов Игорь Андреевич
RU2472701C1
СПОСОБ ПОЛУЧЕНИЯ СОРБЕНТА НА ОСНОВЕ ТЕРМИЧЕСКИ РАСШИРЕННОГО ГРАФИТА И СОРБЕНТ 2017
  • Иванов Андрей Владимирович
  • Максимова Наталья Владимировна
  • Камаев Алексей Олегович
  • Малахо Артем Петрович
  • Авдеев Виктор Васильевич
RU2652704C1

Иллюстрации к изобретению RU 2 610 596 C1

Реферат патента 2017 года СПОСОБ ПОЛУЧЕНИЯ ТЕРМОРАСШИРЕННОГО ГРАФИТА

Изобретение может быть использовано в производстве уплотнительных материалов, низкоплотных теплораспределяющих материалов и сорбентов. Сначала частицы гидролизованного нитрата графита смешивают с гранулированными частицами карбамида в количестве от 5 до 20 масс. %. Полученную смесь нагревают до температуры термического расширения – не ниже 1000°С и выдерживают при этой температуре. Полученный терморасширенный графит имеет насыпную плотность 1-5 г/л и рН от 7 до 8. Изобретение позволяет уменьшить трудоёмкость процесса и количество вредных газовых выбросов в атмосферу. 2 з.п. ф-лы, 1 табл., 2 ил.

Формула изобретения RU 2 610 596 C1

1. Способ получения терморасширенного графита, включающий нагрев частиц гидролизованного нитрата графита до температур термического расширения и выдержку частиц при этих температурах для термического расширения, отличающийся тем, что перед нагревом частицы гидролизованного нитрата графита смешивают с гранулированными частицами карбамида в количестве от 5 до 20 масс. %, а термическое расширение проводят при температуре не ниже 1000°C.

2. Способ по п. 1, отличающийся тем, что термическое расширение проводят при температуре 1100°C и выше.

3. Способ по п. 1, отличающийся тем, что в качестве гранулированных частиц карбамида используют частицы с фракцией менее 1 мм.

Документы, цитированные в отчете о поиске Патент 2017 года RU2610596C1

СПОСОБ ИЗГОТОВЛЕНИЯ НИЗКОПЛОТНЫХ МАТЕРИАЛОВ И НИЗКОПЛОТНЫЙ МАТЕРИАЛ 2013
  • Сорокина Наталья Евгеньевна
  • Малахо Артем Петрович
  • Филимонов Станислав Владимирович
  • Павлов Александр Алексеевич
  • Авдеев Виктор Васильевич
RU2525488C1
СПОСОБ ПОЛУЧЕНИЯ ИНТЕРКАЛИРОВАННОГО ГРАФИТА 2009
  • Шорникова Ольга Николаевна
  • Сорокина Наталья Евгеньевна
  • Петров Дмитрий Викторович
  • Максимова Наталья Владимировна
  • Свиридов Александр Афанасьевич
  • Годунов Игорь Андреевич
  • Селезнев Анатолий Николаевич
  • Авдеев Виктор Васильевич
RU2415078C1
0
SU95592A1
СПОСОБ ПОЛУЧЕНИЯ ТЕРМОРАСШИРЕННОГО ГРАФИТА И ФОЛЬГА НА ЕГО ОСНОВЕ 2011
  • Сорокина Наталья Евгеньевна
  • Малахо Артем Петрович
  • Филимонов Станислав Владимирович
  • Годунов Игорь Андреевич
  • Павлов Александр Алексеевич
  • Авдеев Виктор Васильевич
RU2480406C2
Перекатываемый затвор для водоемов 1922
  • Гебель В.Г.
SU2001A1

RU 2 610 596 C1

Авторы

Филимонов Станислав Владимирович

Иванов Андрей Владимирович

Шорникова Ольга Николаевна

Малахо Артем Петрович

Авдеев Виктор Васильевич

Даты

2017-02-14Публикация

2015-10-15Подача