Способ определения КПД насоса Российский патент 2017 года по МПК F04B51/00 

Описание патента на изобретение RU2610637C1

Изобретение относится к относится к энергетическому машиностроению и может быть использовано при техническом диагностировании состояния центробежных насосов.

Известен способ определения КПД насоса путем прокачки рабочей жидкости через насос, измерения давления и температуры перекачиваемой жидкости на входе в насос и выходе из него и вычисления КПД по измеренным параметрам (Энергетика и электрификация. Экспресс-информация, сер. «Эксплуатация и ремонт электростанций», вып. 6. - М.: Информэнерго, 1980. - с. 24-28). Данный способ обладает низкой точностью определения КПД, обусловленной малой величиной измеряемых температур.

Наиболее близким по технической сущности к предлагаемому техническому решению является способ определения КПД насоса путем прокачки рабочей жидкости через насос, отбора части рабочей жидкости из выходной магистрали, дросселирования отобранного потока до давления на входе, измерения давления и температуры жидкости на входе и выходе, при этом температура на выходе измеряется в дросселированном потоке, а на входе - до места подсоединения перепускного трубопровода, и вычисления КПД по измеренным параметрам (SU 1101585 А, 07.07.1984).

Известен также способ, в котором при испытании насоса устанавливают режим работы насоса с номинальным напором и определение КПД проводят в этом режиме (SU 937770 А 23.06.1982). Измеряемые для определения КПД насоса параметры зависят от режима работы насоса, в результате чего вычисленное без учета нагрузки значение КПД не несет однозначной информации о техническом состоянии насоса.

Недостатком указанных способов является недостаточная точность и информативность при определении технического состояния насоса.

О значении КПД судят по суммарному изменению температуры перекачиваемой жидкости (рабочего тела) в насосе и дросселе, установленном в перепускном трубопроводе. В случае измерения входной температуры до места подсоединения перепускного трубопровода, как в известных способах, измеряемая разность температур будет получать приращение за счет перепускаемой по трубопроводу жидкости, имеющей более высокую по сравнению с входной температуру, в результате чего вычисленное значение КПД будет заниженным по сравнению с фактическим.

Задачей предлагаемого технического решения является повышение точности оценки технического состояния насоса при определении его КПД.

Решение указанной задачи достигается тем, что, согласно известным способам определения КПД насоса, включающим прокачивание рабочей жидкости через насос, установление режима работы насоса с номинальным развиваемым напором, отбор и дросселирование части перекачиваемой рабочей жидкости до давления на входе, измерение давления жидкости на входе и выходе из насоса, измерение температуры жидкости на входе насоса и в дросселированном потоке и вычисление КПД по измеренным параметрам, измерение входной температуры осуществляют после места подсоединения перепускного трубопровода.

Измерение входной температуры после места подсоединения перепускного трубопровода позволяет исключить искажающее влияние перепускаемого (дросселируемого) потока жидкости, имеющего более высокую температуру по сравнению с входной, на результат определения КПД.

Величина КПД центробежного насоса зависит как от его технического состояния, так и режима работы, поэтому каждое диагностирование технического состояния насоса путем определения его КПД необходимо производить при одном и том же режиме работы.

Отличительной чертой изобретения является измерение входной температуры после места подсоединения перепускного трубопровода.

На чертеже представлена гидравлическая схема устройства для реализации данного способа.

Устройство содержит насос 1 с входным патрубком 2 и выходным патрубком 3. На входном патрубке 2 установлены датчик температуры 4 и датчик давления 5. На выходном патрубке 3 установлен датчик давления 6 и вентиль 7 для регулирования развиваемого насосом напора. Выходной патрубок 3 соединен с входным патрубком 2 перепускным трубопроводом 8, на котором установлены датчик температуры 9 и дроссель 10. Датчик температуры 4 установлен после места подсоединения перепускного трубопровода 8 к входному патрубку 2.

Способ реализуется следующим образом.

Перекачиваемая жидкость, имеющая давление P1 и температуру Т1, подается к насосу 1, в котором происходит сжатие жидкости до давления Р2 и повышение ее температуры до Т2. С помощью вентиля 7 устанавливается развиваемый насосом напор, равный номинальному напору для данного типа насоса. Текущий напор Н, развиваемый насосом, определяют по измеренным с помощью датчиков 5 и 6 значениям давлений на входе и выходе насоса:

,

где ρ - плотность перекачиваемой жидкости, g - ускорение свободного падения.

Из входного патрубка 2 часть перекачиваемой насосом жидкости подается по перепускному трубопроводу 8 к дросселю 10, в котором происходит снижение давления рабочей жидкости по изоэнтальпийному закону до давления, равного давлению на входе в насос, и повышение ее температуры до Т2др. С помощью датчиков давления 5 и 6 определяется разность давлений АР=Р21. С помощью датчиков температур 4 и 9 определяется разность температур ΔT=Т2др.-Т1. КПД насоса η вычисляется по формуле:

,

где К - постоянный коэффициент.

Контроль КПД с целью оценки технического состояния насоса служит для своевременного установления момента проведения ремонта или иного вида технического воздействия, а также для определения оптимального состава работающих на одну систему насосов. В свою очередь своевременное проведение технических воздействий позволит наиболее полно использовать ресурс насоса и снизить эксплуатационные затраты за счет уменьшения времени непроизводительной работы насоса.

Похожие патенты RU2610637C1

название год авторы номер документа
Способ определения КПД насоса 1983
  • Геращенко Олег Аркадьевич
  • Грищенко Татьяна Георгиевна
  • Диденко Виктор Моисеевич
  • Декуша Леонид Васильевич
  • Марченко Мария Павловна
  • Астафьев Леонид Федорович
  • Ильяшев Григорий Игнатьевич
SU1101585A1
Способ диагностирования технологического состояния центробежного насоса 1989
  • Воробьев Владимир Викторович
  • Татаринцев Александр Васильевич
SU1751406A1
СПОСОБ ДИАГНОСТИРОВАНИЯ ТЕХНИЧЕСКОГО СОСТОЯНИЯ НАСОСА 2014
  • Воробьев Владимир Викторович
RU2564475C1
Универсальный стенд для испытаний насосов, насосных агрегатов и их систем 2021
  • Маркин Валерий Алексеевич
  • Думболов Джамиль Умярович
  • Ганин Вячеслав Сергеевич
  • Середа Владимир Васильевич
  • Рушкин Николай Сергеевич
  • Панасян София Александровна
RU2778768C1
Устройство для определения технического состояния насоса 2015
  • Воробьев Владимир Викторович
RU2612684C1
Способ определения КПД насоса 1983
  • Геращенко Олег Аркадьевич
  • Грищенко Татьяна Георгиевна
  • Диденко Виктор Моисеевич
  • Декуша Леонид Васильевич
  • Марченко Мария Павловна
  • Астафьев Леонид Федорович
  • Ильяшев Григорий Игнатьевич
SU1268815A1
СПОСОБ ДИАГНОСТИРОВАНИЯ ТЕХНИЧЕСКОГО СОСТОЯНИЯ НАСОСА 2010
  • Воробьев Владимир Викторович
RU2450253C1
АВТОМАТИЗИРОВАННАЯ ИНФОРМАЦИОННАЯ СИСТЕМА ДЛЯ УПРАВЛЕНИЯ НАСОСНО-ТРУБОПРОВОДНЫМ КОМПЛЕКСОМ С ВЕРТИКАЛЬНЫМИ ЭЛЕКТРОЦЕНТРОБЕЖНЫМИ НАСОСАМИ ДЛЯ ОТКАЧКИ КАНАЛИЗАЦИОННЫХ СТОЧНЫХ ВОД 2012
  • Кричке Владимир Оскарович
  • Галицков Станислав Яковлевич
  • Кричке Ольга Алексеевна
  • Кричке Виктор Владимирович
  • Волков Юрий Вениаминович
  • Макеев Александр Евгеньевич
RU2493542C1
СПОСОБ ЭКСПЛУАТАЦИИ НАСОСНОГО АГРЕГАТА В ПРОЦЕССЕ ЗАКАЧКИ ЖИДКОСТИ В ПЛАСТ 2009
  • Коннов Владимир Александрович
  • Фаттахов Рустем Бариевич
  • Сахабутдинов Рифхат Зиннурович
  • Степанов Валерий Федорович
  • Арсентьев Андрей Александрович
RU2395723C1
АВТОМАТИЗИРОВАННАЯ УСТАНОВКА КОНТРОЛЯ ТЕХНИЧЕСКОГО СОСТОЯНИЯ СПЕЦИАЛЬНОГО ТЕХНОЛОГИЧЕСКОГО ОБОРУДОВАНИЯ АВТОТОПЛИВОЗАПРАВЩИКОВ 2019
  • Багаев Леонид Александрович
  • Красовский Виктор Семенович
  • Кирпичников Виктор Николаевич
  • Середа Владимир Васильевич
  • Таран Владимир Михайлович
RU2718713C1

Иллюстрации к изобретению RU 2 610 637 C1

Реферат патента 2017 года Способ определения КПД насоса

Изобретение относится к энергетическому машиностроению и может быть использовано при техническом диагностировании состояния центробежных насосов. Способ определения КПД насоса включает прокачивание рабочей жидкости через насос, установление режима работы насоса с номинальным напором, отбор и дросселирование части перекачиваемой рабочей жидкости до давления на входе, измерение давления жидкости на входе и выходе из насоса, измерение температуры жидкости на входе насоса и в дросселированном потоке и вычисление КПД по измеренным параметрам. При этом измерение входной температуры перекачиваемой жидкости осуществляют после места подсоединения перепускного трубопровода. Изобретение направлено на повышение точности оценки технического состояния насоса при определении его КПД. 1 ил.

Формула изобретения RU 2 610 637 C1

Способ определения КПД насоса, включающий прокачивание рабочей жидкости через насос, установление режима работы насоса с номинальным напором, отбор и дросселирование части перекачиваемой рабочей жидкости до давления на входе, измерение давления жидкости на входе и выходе из насоса, измерение температуры жидкости на входе насоса и в дросселированном потоке и вычисление КПД по измеренным параметрам, отличающийся тем, что измерение входной температуры перекачиваемой жидкости осуществляют после места подсоединения перепускного трубопровода.

Документы, цитированные в отчете о поиске Патент 2017 года RU2610637C1

Способ определения КПД насоса 1983
  • Геращенко Олег Аркадьевич
  • Грищенко Татьяна Георгиевна
  • Диденко Виктор Моисеевич
  • Декуша Леонид Васильевич
  • Марченко Мария Павловна
  • Астафьев Леонид Федорович
  • Ильяшев Григорий Игнатьевич
SU1101585A1
Способ приготовления пряничного заварного теста 1951
  • Волкова В.А.
  • Греков И.М.
  • Данилевская В.В.
  • Липец В.С.
  • Лисагор Л.А.
  • Милль Л.Д.
  • Розанова О.И.
  • Сигаль Г.Н.
  • Токарев Л.И.
SU93770A1
Способ диагностирования технического состояния насоса 1986
  • Заякин Владимир Валерьевич
  • Пермяков Станислав Александрович
  • Воробьев Владимир Викторович
SU1513196A1
US 2006162438 A1, 27.07.2006.

RU 2 610 637 C1

Авторы

Воробьев Владимир Викторович

Даты

2017-02-14Публикация

2015-12-08Подача