ТОКОПРОВОДЯЩАЯ КЛЕЕВАЯ КОМПОЗИЦИЯ Российский патент 2017 года по МПК C09J9/00 

Описание патента на изобретение RU2612717C2

Изобретение относится к токопроводящим полимерным композициям для использования в электронной технике и может быть использовано для формирования токопроводящих топологий печатными методами, посадки кристаллов в полупроводниковых приборах на плату и в качестве рабочего электрода для электроэрозионной обработки металлических поверхностей.

В связи с развитием технологий аддитивной печати в области электроники и автоматизации сборочных процессов полупроводниковых приборов, а также в области электроэрозионной обработки металлических поверхностей, широкий интерес представляет разработка токопроводящих клеевых композиций. Так, известны работы различных отечественных и зарубежных компаний в этой области [1-4].

Известно техническое решение "Электропроводящая паста" по патенту ФГУП "НИИ "ВОЛГА" RU 2389095 (2010 г. ) [5], который раскрывает технологию получения толстопленочных структур методом трафаретной печати. Известный способ может быть использован в электронной технике при производстве электронных схем и индикаторных приборов. Технический результат - разработка электропроводящей пасты для формирования проводящих дорожек методом трафаретной печати с высоким разрешением, имеющей температуру спекания не выше 300°С. Достигается это тем, что в электропроводящей пасте, содержащей органическое связующее и неорганическую составляющую, в качестве неорганической составляющей содержится стабилизированный нанодисперсный порошок серебра с размерами частиц в диапазоне 20-50 нм и мелкодисперсный порошок серебра с размерами частиц в диапазоне 1-5 мкм при следующем соотношении компонентов, масс. %: органическое связующее - 20-40; мелкодисперсный порошок серебра - 60-85; нанодисперсный порошок серебра - 10-20.

Недостатками аналога [5] являются: высокая температура спекания, невозможность использования пасты для посадки кристаллов в полупроводниковых приборах.

Наиболее близкой к заявляемой является токопроводящая клеевая композиция по патенту ФГУП НПП "Исток" RU 2412972 (2011 г. ) [6], содержащая связующее на основе модифицированной эпоксидной смолы и ее разбавителя, отвердитель и металлический наполнитель - порошок серебра. Связующее представляет собой эпоксиноволачную смолу, а ее разбавитель - диглицидиловый эфир, отвердитель представляет собой продукт взаимодействия аминофенола с непредельными органическими кислотами, металлический наполнитель выполнен в виде порошка нанодисперсного серебра, при этом композиция дополнительно содержит смесь из аппретирующей добавки и растекателя, и растворитель из группы простых эфиров полигликолей при следующем соотношении компонентов (мас.ч.): эпоксиноволачная смола - 2,2-1,4; диглицидиловый эфир - 0,7-0,3; продукт взаимодействия аминофенола с непредельными органическими кислотами 2,9-1,7; порошок нанодисперсного серебра - 72,0-82,0; смесь органофеноксисилоксана и органофеноксисилана при соотношении 1:1 - 2,2-2,6; растворитель из группы простых эфиров полигликолей - остальное. Растворитель из группы простых эфиров полигликолей может представлять собой, например, бутилкарбитол.

Недостатками прототипа являются: большое число компонентов, что усложняет процесс приготовления композиции. Содержание наполнителя в количестве 72-82% приводит к удорожанию конечного продукта. Теплостойкость до 400°С не позволяет использовать композицию в устройствах и изделиях специального применения с высокими рабочими температурами.

Задачами, на достижение которых направлено заявляемое техническое решение, являются: уменьшение количества металлического наполнителя, снижение температуры спекания, уменьшение числа компонентов, увеличение коэффициента теплопроводности, снижение удельного объемного электрического сопротивления.

Это достигается тем, что в токопроводящей клеевой композиции, содержащей органическое связующее, растворитель, отвердитель и металлический наполнитель - нанодисперсный порошок серебра, в качестве органического связующего используется продукт сополимеризации винилхлорида с малеиновым ангидридом - (10-20 масс. %), в качестве отвердителя используется поливинилацетат (1.5-5 масс. %); в качестве растворителя - циклогексанол (2-5 масс. %), в качестве металлического наполнителя - порошок серебра с размерами частиц в диапазоне 3-100 нм (50-60 масс. %) и мелкодисперсный порошок серебра с размерами частиц в диапазоне - 0,2-1 мкм (2-9 масс. %), дополнительно вводятся пластификатор, металлосодержащие компоненты наноразмерных порошков никеля и кобальта, покрытых углеродными нанотрубками, причем в качестве пластификатора используется глицерин и/или дибутилфталат (1-3 масс. %), металлосодержащие компоненты наноразмерных порошков никеля и кобальта покрыты углеродными нанотрубками, при соотношении компонентов: наноразмерный порошок никеля, покрытый углеродными нанотрубками (2-5 масс. %), наноразмерный порошок кобальта, покрытый углеродными нанотрубками (3-6 масс. %), и приготовленную смесь гомогенизируют, используя механохимическую обработку с одновременной ультразвуковой обработкой.

Решение поставленной технической задачи в части уменьшения температуры спекания обеспечивается исключением из композиции компонентов с высокой температурой плавления, за счет использования полученных методом электроимпульсного диспергирования серебряных гранул в водном растворе нано- и микропорошков серебра и синтезированных связующих материалов. Уменьшение количества наполнителя реализовано за счет достижения в композиции перколяционного эффекта, когда за счет контактирования и распределения частиц металлического наполнителя в композиции образуются непрерывные токопроводящие области. Это обеспечивает после смешения компонентов и нанесения композиции на подложку (различные по химической природе основания) распределение частиц нано- и микроразмерных порошков в оптимальном количестве, которое позволяет достигать высоких значений теплопроводности и низких значений удельного объемного электрического сопротивления.

Уменьшение количества компонентов достигается за счет использования органического связующего, имеющего высокую адгезионную и когезионную прочность.

Предлагаемая токопроводящая клеевая композиция отжигается при температурах, не превышающих 200°C, что позволяет использовать более широкий круг подложек в том числе из органических материалов. При этом следует отметить, что использование сополимера винилхлорид-малеиновый ангидрид, отвердителя поливинилацетата, растворителя циклогексанола и пластификатора глицерин и/или дибутилфталата улучшает адгезионные свойства токопроводящей композиции.

Пример №1 практической реализации

Токопроводящая клеевая композиция составлялась из следующего соотношения компонентов (мас. %):

- наноразмерный порошок серебра - 60,

- микроразмерный порошок серебра - 9,

- наноразмерный порошок никеля покрытый углеродными нанотрубками - 2,5

- наноразмерный порошок кобальта покрытый углеродными нанотрубками - 3,5

- органическое связующее - 20 (винилхлорид-малеиновый ангидрид, сокр. ВХ-МА)),

- отвердитель (поливинилацетат) - 2,

- растворитель (циклогексанол) - 2,

- пластификатор (глицерин и/или дибутилфиалат) - 1.

Исходные компоненты взвешиваются согласно соотношению и перемешиваются в специальной установке типа УКМ (механохимическое смешение с одновременной ультразвуковой обработкой, способствующей деагломерированию частиц наполнителей) в течение 15-20 мин. Для выполнения токопроводящей топологии на диэлектрическую подложку наносится приготовленная композиция методом трафаретной печати. Для использования композиции в электронике, наносятся небольшие количества композиции на основания и затем приклеивается необходимый компонент. Далее осуществляется процесс сушки на открытом воздухе при нормальных условиях (25°C) в течение 5-10 мин, а потом - процесс отжига нанесенных на подложку топологий или приклеенных компонентов электроники на любое другое основание, в сушильном шкафу при температуре 200°C 8-10 мин. Температуру отжига можно понизить за счет увеличения времени процесса сушки на открытом воздухе при нормальных условиях. Полученные токопроводящие топологии имеют низкое значение удельного объемного электрического сопротивления - 3,1⋅10-8 Ом×м и высокое значение теплопроводности - 199,93 Вт/м×K. Слой проводника на печатных платах может быть получен после термообработки толщиной 0,03 мкм и выше.

Экспериментально измеренные значения удельного электрического сопротивления и теплопроводности полимерной композиции приведены в таблицах 1 и 2 соответственно.

Использованные источники информации

1. Патент РФ №2308105, МПК Н01В 3/40, C09J 163/10, приоритет 2005.12.27, опубл. 2007.10.10.

2. Патент РФ №2058361, МПК6 C09J 9/02, C09J 163/00, приоритет 1993.09.14, опубл. 1996.04.20.

3. Патент РФ №2246519, МПК7 C09J 9/00, C09J 9/02, приоритет 21.04.2003, опубл. 20.02.2005, бюл. 5.

4. U.S. Patent N6265471.

5. Патент РФ №2389095, МПК6 Н01В 1/22, приоритет 25.03.2008, опубл. 10.05.2010.

6. Патент РФ №2412972, МПК6 C09J 9/00, C09J 9/02, C09J 163/00, C09J 163/04, C08K 3/22, приоритет 11.01.2009, опубл. 20.07.2010. - Прототип.

Похожие патенты RU2612717C2

название год авторы номер документа
НАНОМОДИФИЦИРОВАННАЯ ЭЛЕКТРОПРОВОДЯЩАЯ КЛЕЕВАЯ КОМПОЗИЦИЯ ХОЛОДНОГО ОТВЕРЖДЕНИЯ 2018
  • Ткачев Алексей Григорьевич
  • Меметов Нариман Рустемович
  • Ягубов Виктор Сахибович
  • Столяров Роман Александрович
  • Щегольков Александр Викторович
RU2688573C1
ТОКОПРОВОДЯЩАЯ КЛЕЕВАЯ КОМПОЗИЦИЯ 2009
  • Ершова Тамара Николаевна
  • Смирнова Галина Владимировна
  • Кодрашенков Юрий Александрович
  • Астапов Борис Александрович
  • Ковязин Владимир Александрович
  • Райгородский Игорь Михайлович
RU2412972C9
ТОКОПРОВОДЯЩАЯ КЛЕЕВАЯ КОМПОЗИЦИЯ 2009
  • Дворецкий Александр Эргардович
  • Гладких Светлана Николаевна
  • Кузнецова Людмила Ивановна
  • Мокрушин Михаил Геннадьевич
RU2408642C1
ЭПОКСИДНАЯ КОМПОЗИЦИЯ ХОЛОДНОГО ОТВЕРЖДЕНИЯ 2018
  • Стрельников Владимир Николаевич
  • Сеничев Валерий Юльевич
  • Слободинюк Алексей Игоревич
  • Волкова Елена Рудольфовна
  • Макарова Марина Александровна
  • Савчук Анна Викторовна
RU2749379C2
Клеевая композиция для электронной техники СВЧ 2017
  • Ершова Тамара Николаевна
  • Смирнова Галина Владимировна
  • Ковшова Дарья Викторовна
RU2662513C1
КЛЕЕВАЯ КОМПОЗИЦИЯ С НАНОМОДИФИКАТОРОМ ДЛЯ ДРЕВЕСНОСТРУЖЕЧНЫХ ПЛИТ 2012
  • Рожкова Наталья Николаевна
  • Панов Николай Геннадьевич
  • Питухин Александр Васильевич
  • Рожков Сергей Сергеевич
  • Васильев Сергей Борисович
  • Колесников Геннадий Николаевич
RU2520449C2
ЗАЩИТНОЕ КОМПОЗИЦИОННОЕ ПОКРЫТИЕ С ПОВЫШЕННОЙ КОРРОЗИОННОЙ СТОЙКОСТЬЮ И УСТОЙЧИВОСТЬЮ К ОБЛЕДЕНЕНИЮ 2019
  • Морозова Зоя Васильевна
RU2724746C1
КОМПОЗИЦИИ ПРОВОДЯЩЕГО ГЕРМЕТИКА 2012
  • Шараби Ахмед
  • Тан Пончиви
RU2573481C2
Клеевая композиция холодного отверждения 2022
  • Шмойлов Евгений Евгеньевич
  • Чурсова Лариса Владимировна
  • Панина Наталия Николаевна
RU2791395C1
КОМПОЗИЦИИ ЭЛЕКТРОПРОВОДЯЩЕГО ГЕРМЕТИКА 2012
  • Шараби Ахмед
  • Тан Пончиви
RU2573673C2

Реферат патента 2017 года ТОКОПРОВОДЯЩАЯ КЛЕЕВАЯ КОМПОЗИЦИЯ

Изобретение относится к токопроводящим полимерным композиционным материалам, а также к клеям и пастам, изготовленным из них. Композиция содержит пластификатор, металлосодержащие компоненты наноразмерных порошков никеля и кобальта, покрытых углеродными нанотрубками. Токопроводящая клеевая композиция на основе органического связующего и нано- и микропорошка серебра дополнительно содержит глицерин и/или дибутилфталат, наноразмерные порошки никеля и кобальта, покрытые углеродными нанотрубками с заданным соотношением компонентов, с последующим механохимическим смешением с одновременной ультразвуковой обработкой, способствующей деагломерированию частиц наполнителей. Изобретение позволяет уменьшить температуру спекания материала, увеличить значение теплопроводности, уменьшить значение удельного объемного электрического сопротивления. 2 табл., 1 пр.

Формула изобретения RU 2 612 717 C2

Токопроводящая клеевая композиция, содержащая органическое связующее, растворитель, отвердитель и металлический наполнитель - нанодисперсный порошок серебра, отличающаяся тем, что в качестве органического связующего содержит продукт сополимеризации винилхлорида с малеиновым ангидридом - 10-20 масс. %, в качестве отвердителя содержит поливинилацетат 1.5-5 масс. %; в качестве растворителя - циклогексанол 2-5 масс. %, в качестве пластификатора содержит глицерин и/или дибутилфталат 1-3 масс. %, в качестве металлического наполнителя содержит порошок серебра с размерами частиц в диапазоне 3-100 нм 50-60 масс. % и мелкодисперсный порошок серебра с размерами частиц в диапазоне 0,2-1 мкм 2-9 масс. %, в качестве металлосодержащих компонентов содержит наноразмерные порошки никеля и кобальта, покрытые углеродными нанотрубками, при соотношении компонентов: наноразмерный порошок никеля, покрытый углеродными нанотрубками 2-5 масс. %, наноразмерный порошок кобальта, покрытый углеродными нанотрубками 3-6 масс. %, и приготовленная токопроводящая клеевая композиция подвержена гомогенизации.

Документы, цитированные в отчете о поиске Патент 2017 года RU2612717C2

ТОКОПРОВОДЯЩАЯ КЛЕЕВАЯ КОМПОЗИЦИЯ 2009
  • Ершова Тамара Николаевна
  • Смирнова Галина Владимировна
  • Кодрашенков Юрий Александрович
  • Астапов Борис Александрович
  • Ковязин Владимир Александрович
  • Райгородский Игорь Михайлович
RU2412972C9
RU 2058361 C1, 20.04.1996
ТОКОПРОВОДЯЩАЯ КЛЕЕВАЯ КОМПОЗИЦИЯ 2005
  • Каблов Евгений Николаевич
  • Солнцев Станислав Сергеевич
  • Лукина Наталия Филипповна
  • Авдонина Ирина Алексеевна
  • Требукова Елена Андреевна
  • Котова Елена Владимировна
RU2308105C1
CN 1632032, 29.06.2005.

RU 2 612 717 C2

Авторы

Иванов Александр Андреевич

Туев Василий Иванович

Даты

2017-03-13Публикация

2015-06-23Подача