Шихта для производства вольфрамотитановых твердых сплавов Российский патент 2017 года по МПК C22C29/06 B22F1/00 C22B7/00 

Описание патента на изобретение RU2612886C2

Предлагаемое изобретение относится к области порошковой металлургии и может быть использовано для производства вольфрамотитановых твердых сплавов в условиях массового, серийного и единичного производства.

Известно, что спеченные твердые сплавы на основе карбида вольфрама содержат кобальт, играющий роль пластичной связи при спекании [1].

Известен способ приготовления шихты для спеченных твердых сплавов, согласно которому сначала синтезируют карбид вольфрама из вольфрама и углерода, затем добавляют металлический кобальт [2].

При синтезе карбида вольфрама сначала смешивают в смесительных аппаратах порошки вольфрама и углерода в виде сажи в соотношении вольфрам - 94,8 мас. %, сажа - 5,2 мас. %, а карбидизацию проводят в графитовых печах в среде водорода при 1300…1400°С.

Степень равномерности распределения кобальта в карбиде вольфрама влияет на качество спеченного твердого сплава, поэтому карбид вольфрама размалывают с порошком металлического кобальта, добавленного в количестве 6% (по составу сплава ВК-6), в шаровых мельницах в течение 48…72 ч при добавлении органических жидкостей. Размольное оборудование должно быть футеровано твердосплавным материалом для предотвращения износа оборудования и загрязнения шихты при натирании твердыми частицами карбида вольфрама. После размола шихту просеивают для получения однородного гранулометрического состава, необходимого для достижения максимальной плотности при прессовании и спекании готовых изделий.

Недостатками данного метода приготовления шихты для спеченных твердых сплавов являются многостадийность и достаточная трудоемкость. Процессы получения карбида вольфрама и распределение кобальта в карбиде вольфрама проводят на специализированном для каждой операции оборудовании.

Ближайшим техническим решением является способ приготовления шихты для твердых сплавов на основе карбида вольфрама. Изобретение относится к производству металлокерамических твердых сплавов на основе карбидов тугоплавких металлов, которые используются как износостойкие материалы, режущий инструмент, эрозиостойкие, жаропрочные покрытия. Смесь порошков вольфрама, углерода и кобальта, взятых в соотношениях, отвечающих составу сплава ВК-6, подвергают механической обработке в механохимическом реакторе при ускорении 40…60 g в течение 10-30 мин.

Задача предлагаемого изобретения состоит в улучшении качественного состава шихты и физико-механических свойств вольфрамотитановых твердых сплавов.

Поставленная задача решается тем, что шихта для производства вольфрамотитановых твердых сплавов представляет собой твердосплавный порошок, который является продуктом электроэрозионного диспергирования (ЭЭД) отходов твердого сплава марки Т15К6 в керосине и дистиллированной воде со средним размером частиц 19,692 мкм и 5,118 мкм соответственно.

Технологическая установка для получения порошков из отходов твердых сплавов состоит из источника питания искровыми разрядами, реактора и системы управления. В реакторе между электродами находятся гранулы - куски сплава произвольной формы и размеров. Электроды изготавливаются из диспергируемого материала. Межэлектродный промежуток заполняется керосином так, что слой гранул погружен в эту жидкость.

Соприкасаясь, гранулы образуют множество электрических контактов, соединенных в межэлектродном промежутке последовательно-параллельно. Один разрядный импульс между электродами вызывает в слое гранул, погруженных в рабочую жидкость, искрение во многих местах. В местах контакта материал гранул может быть не только расплавлен, но и доведен до более высоких температур, при которых возможно испарение и взрывное удаление материала. При этом частицы вещества отрываются от поверхности гранул и мгновенно охлаждаются жидкостью. В результате электрической эрозии возникают частицы преимущественно сферической формы.

Пример 1

На установке (Пат. 2449859 Российская Федерация, МПК C22F 9/14, С23Н 1/02, B82Y 40/00. Установка для получения нанодисперсных порошков из токопроводящих материалов [Текст] / Агеев Е.В. и [др.]; заявитель и патентообладатель Юго-Зап. гос. ун-т. - №2010104316/02; заявл. 08.02.2010; опубл. 10.05.2012, Бюл. №13) диспергировали твердый сплав марки Т15К6 в керосине при следующих режимах: напряжение на электродах U=200…220 В, частота следования импульсов ν=30 Гц, емкость разрядных конденсаторов С=35 мкФ.

Полученные порошки из отходов твердого сплава марки Т15К6, содержащего 6% кобальта, 15% карбида титана и 79% карбида вольфрама, обладают хорошей текучестью и имеют в основном сферическую и эллиптическую форму. В своей структуре эти порошки содержат высокотвердые фазы - карбиды α-WC, W2C; и TiC, и химический состав, представленный в табл. 1 (фиг. 1).

После получения порошка на установке отгоняют нанодисперсную фракцию на центрифуге и его очищают от керосина бензином, а затем прокаливают в течение 20 минут в печи при 200°С. Полученный таким образом порошок со средним размером частиц 19,692 мкм используется для получения шихты для производства вольфрамотитанового твердого сплава.

Снимки поверхности частиц вольфрамотитанового твердосплавного порошка, полученного в керосине на растровом электронном микроскопе «Quanta 600 FEG», представлены на фиг. 2. Видно, что в порошке превалируют частицы, имеющие правильную сферическую или эллиптическую форму. Они получаются кристаллизацией расплавленного материала (жидкой фазы). Частицы, образующиеся при кристаллизации кипящего материала (паровой фазы), имеют неправильную форму, размер на порядок меньше частиц, образующихся из жидкой фазы, и обычно агломерируются друг с другом и на поверхности других частиц.

В процессе ЭЭД такие частицы наиболее подвержены химическим и фазовым изменениям. Показано, что форма частиц порошка обусловлена тем, в каком виде материал выбрасывается из лунки в процессе ЭЭД.

Установлено, что частицы, выбрасываемые из лунки в твердом состоянии (твердая фаза), образуются под действием ударных волн канала разряда и под действием термических напряжений, а также частицы твердой фазы образуются при хрупком изломе острых граней и краев диспергируемого материала при его перемешивании во время процесса ЭЭД. Такие частицы, как правило, имеют неправильную осколочную форму, иногда с оплавленными гранями и краями.

Таким образом, на основании проведенных исследований установлено, что форма частиц порошка, полученного электроэрозионным диспергированием отходов твердого сплава марки Т15К6 в керосине осветительном, обусловлена тем, в каком виде материал выбрасывается из лунки в процессе ЭЭД. Отмечено, что сферические частицы получаются кристаллизацией расплавленного материала (жидкой фазы), а частицы осколочной формы - при хрупком изломе. Установлено, что в порошке превалируют частицы, имеющие правильную сферическую или эллиптическую форму.

Для производства вольфрамотитановых твердых сплавов следует применять порошок, полученный методом ЭЭД в среде керосина, т.к. этот порошок имеет меньшие потери углерода.

Пример 2

На установке (Пат. 2449859 Российская Федерация, МПК C22F 9/14, С23Н 1/02, B82Y 40/00. Установка для получения нанодисперсных порошков из токопроводящих материалов [Текст] / Агеев Е.В. и [др.]; заявитель и патентообладатель Юго-Зап. гос. ун-т. - №2010104316/02; заявл. 08.02.2010; опубл. 10.05.2012, Бюл. №13) диспергировали твердый сплав марки Т15К6 в дистиллированной воде при следующих режимах: напряжение на электродах U=200…220 В, частота следования импульсов ν=30 Гц, емкость разрядных конденсаторов С=35 мкФ.

Полученные порошки из отходов твердого сплава марки Т15К6, содержащего 6% кобальта, 15% карбида титана и 79% карбида вольфрама, обладают хорошей текучестью и имеют в основном сферическую и эллиптическую форму. В своей структуре эти порошки содержат высокотвердые фазы - карбиды W2C; и TiC, и химический состав, представленный в табл. 2 (фиг. 1).

После получения порошка на установке отгоняют нанодисперсную фракцию на центрифуге и его очищают от оксидов 10 - % HCl, а затем прокаливают в течение 20 минут в печи при 200°С. Полученный таким образом порошок со средним размером частиц 5,118 мкм используется для получения шихты для производства твердого сплава.

Снимки поверхности частиц вольфрамотитанового твердосплавного порошка, полученного в воде дистиллированной на растровом электронном микроскопе «Quanta 600 FEG», представлены на фиг. 3.

Форма частиц порошка обусловлена тем, в каком виде материал выбрасывается из лунки в процессе ЭЭД. Обычно в порошке превалируют частицы, полученные кристаллизацией расплавленного материала (жидкая фаза). Они имеют правильную сферическую или эллиптическую форму.

Порошок, полученный методом ЭЭД из отходов твердых сплавов, состоит из частиц правильной сферической формы (или эллиптической), неправильной формы (конгломератов) и осколочной формы.

При ЭЭД частицы порошка, выбрасываемые из канала разряда в жидком состоянии в РЖ, быстро кристаллизуются и закаливаются, поэтому и имеют сферическую или эллиптическую форму. После выхода из зоны разряда частицы порошка весьма часто сталкиваются между собой. Если в момент столкновения кристаллизация была полностью завершена, то на частицах остаются характерные следы от ударов и сетчатая поверхность.

Если имеется значительная разница температур столкнувшихся частиц, то происходит их слипание с образованием непрочных границ. Как правило, такое происходит при столкновении крупных частиц, образовавшихся из жидкой фазы, с мелкими частицами, образовавшимися из паровой фазы. Если нет существенной разницы температур частиц при столкновении, то могут образовываться конгломераты неправильных форм.

Для производства вольфрамотитановых твердых сплавов не следует применять порошок, полученный методом ЭЭД в воде дистиллированной, т.к. этот порошок имеет большие потери углерода.

Источники информации

1. Косолапова Т.Я. Карбиды. М.: Металлургия, 1968.

2. Третьяков В.И. Основы металловедения и технологии производства спеченных твердых сплавов. М.: Металлургия, 1976.

Похожие патенты RU2612886C2

название год авторы номер документа
ШИХТА ЭЛЕКТРОДНОГО МАТЕРИАЛА ДЛЯ ЭЛЕКТРОИСКРОВОГО ЛЕГИРОВАНИЯ ДЕТАЛЕЙ МАШИН 2012
  • Агеев Евгений Викторович
  • Гадалов Владимир Николаевич
  • Романенко Дмитрий Николаевич
  • Агеева Екатерина Владимировна
RU2515409C2
Способ получения вольфрамо-титано-кобальтового твердого сплава из порошков, полученных электроэрозионным диспергированием отходов сплава Т5К10 в керосине 2022
  • Агеев Евгений Викторович
  • Агеева Екатерина Владимировна
  • Агеева Анна Евгеньевна
RU2802693C1
Способ получения вольфрамо-титано-кобальтового твердого сплава из порошков, полученных электроэрозионным диспергированием отходов сплава Т5К10 в воде 2022
  • Агеев Евгений Викторович
  • Агеева Екатерина Владимировна
  • Агеева Анна Евгеньевна
RU2802692C1
Способ получения заготовок вольфрамо-титанового твердого сплава 2015
  • Агеева Екатерина Владимировна
  • Кругляков Олег Викторович
  • Хардиков Сергей Владимирович
  • Агеев Евгений Викторович
  • Осьминина Анастасия Сергеевна
RU2613240C2
Способ получения спеченных изделий из электроэрозионных вольфрамосодержащих нанокомпозиционных порошков 2018
  • Агеев Евгений Викторович
  • Агеева Екатерина Владимировная
  • Алтухов Александр Юрьевич
  • Новиков Евгений Петрович
  • Переверзев Антон Сергеевич
RU2681238C1
КОМПОЗИЦИЯ ДЛЯ ПЛАЗМЕННО-ПОРОШКОВОЙ НАПЛАВКИ ИЗНОСОСТОЙКИХ ПОКРЫТИЙ НА ДЕТАЛИ МАШИН, ВКЛЮЧАЮЩАЯ ПОРОШОК КАРБИДА ВОЛЬФРАМА И КАРБИДА ТИТАНА 2006
  • Петридис Александр Викторович
  • Толкушев Андрей Александрович
  • Агеев Евгений Викторович
  • Агеева Екатерина Владимировна
RU2364482C2
Способ получения твердосплавного порошка из отходов сплава Т5К10 в керосине осветительном 2022
  • Агеев Евгений Викторович
  • Королев Михаил Сергеевич
  • Поданов Вадим Олегович
  • Агеева Анна Евгеньевна
RU2791734C1
Способ получения твердосплавного порошка из отходов сплава Т5К10 в воде дистиллированной. 2022
  • Агеев Евгений Викторович
  • Королев Михаил Сергеевич
  • Поданов Вадим Олегович
  • Агеева Анна Евгеньевна
RU2784147C1
Способ получения никельхромового сплава Х20Н80, спеченного из электроэрозионных порошков, полученных в керосине 2021
  • Агеев Евгений Викторович
  • Бобков Евгений Александрович
RU2772880C1
Способ получения безвольфрамовых твердосплавных порошковых материалов в воде дистилированной 2021
  • Агеев Евгений Викторович
  • Агеева Екатерина Владимировна
  • Сабельников Борис Николаевич
RU2763431C1

Иллюстрации к изобретению RU 2 612 886 C2

Реферат патента 2017 года Шихта для производства вольфрамотитановых твердых сплавов

Изобретение относится к получению вольфрамотитановых твердых сплавов. Шихта содержит порошок карбида вольфрама и карбида титана в виде продукта электроэрозионного диспергирования отходов твердого сплава марки Т15К6, который получен в керосине и дистиллированной воде и имеет средний размер частиц 19,692 мкм и 5,118 мкм соответственно. Обеспечивается повышение качества вольфрамотитановых твердых сплавов. 3 ил., 2 пр.

Формула изобретения RU 2 612 886 C2

Шихта для производства вольфрамотитановых твердых сплавов, содержащая порошок карбида вольфрама и карбида титана, отличающаяся тем, что она содержит упомянутый порошок в виде продукта электроэрозионного диспергирования отходов твердого сплава марки Т15К6, который получен в керосине и дистиллированной воде и имеет средний размер частиц 19,692 мкм и 5,118 мкм соответственно.

Документы, цитированные в отчете о поиске Патент 2017 года RU2612886C2

ТРЕТЬЯКОВ В.И
Основы металловедения и технологии производства спеченных твердых сплавов
М., Металлургия, 1976, с.164
Способ получения спеченных твердых сплавов 1949
  • Третьяков В.И.
  • Чапорова И.Н.
SU95485A1
ШИХТА ТВЕРДОГО СПЛАВА НА ОСНОВЕ КАРБИДА ВОЛЬФРАМА 1993
  • Орданьян С.С.
  • Балахонцев В.М.
  • Хохлов А.М.
  • Пантелеев И.Б.
RU2062812C1
Устройство для центральной смазки двухтактных двигателей внутреннего горения 1929
  • Переверзев С.И.
SU14245A1
US 20100089203 A1, 15.04.2010
АГЕЕВ А.В
и др
Разработка оборудования и технологии получения порошков из отходов вольфрамсодержащих твердых сплавов для промышленного использования
Вестник машиностроения, 2013, N 11, с.51-56.

RU 2 612 886 C2

Авторы

Агеева Екатерина Владимировна

Кругляков Олег Викторович

Хардиков Сергей Владимирович

Агеев Евгений Викторович

Осьминина Анастасия Сергеевна

Даты

2017-03-13Публикация

2015-05-27Подача