Изобретение относится к медицине, а именно к офтальмологии, и может быть использовано в экспериментальной медицине в целях укрепления тканей бельма на различных этапах кератопротезирования.
Известен способ укрепления бельма роговицы аутохрящем ушной раковины [Краснов М.М. и др. Офтальмологический журнал. 1978, №7, с. 392-394].
Известен способ укрепления бельма роговицы аутонадкостницей большеберцовой кости [Волков В.В., Ушаков Н.А. в кн. «Вопросы восстановительной офтальмологии». Л., 1972, с. 37].
Недостатками этих способов являются необходимость в предварительном заборе аутологичных тканей и возникающие сложности при моделировании имплантата, а также слабые адаптационные возможности материала и его лизис в послеоперационном периоде.
Наиболее близким аналогом является способ подготовки ожогового бельма роговицы к кератопротезированию с использованием эквивалента хрящевой ткани [Перспективы использования тканеинженерной конструкции на основе культивированных аутологичных хондроцитов на этапах подготовки бельма к кератопротезированию. / Р.А. Гундорова, Е.В. Киселева, П.В. Макаров, Ю.А. Капитонов, Т.А. Канукова. // Российский офтальмологический журнал. - 2014. - Т. 7. - №3. - С. 65-70].
Недостатком данного способа является необходимость в заборе аутологичных клеток и их последующее культивирование, что требует проведения дополнительной операции и не дает возможности приступить к лечению в кратчайшие сроки. Также не решена проблема лизиса используемого имплантата и его большая толщина, усложняющая проведение операции.
Задачей изобретения является повышение биомеханических свойств роговицы в эксперименте и стабилизация полученного функционального эффекта в течение длительного времени.
Техническим результатом, достигаемым при использовании изобретения, является создание благоприятной почвы для дальнейшего кератопротезирования, что приводит к уменьшению операционных и послеоперационных осложнений при лечении ожоговых бельм роговицы.
Технический результат достигается тем, что в способе укрепления бельма роговицы в эксперименте, включающем использование имплантата, изготовленного из коллагена, согласно изобретению, у экспериментальных животных производят разрез роговицы концентрично лимбу, затем формируют роговичный интрастромальный карман, в который вводят имплантат в виде диска, диаметром 9-12 мм и толщиной 0,2-0,5 мм, состоящий из 4-5 мг коллагена I типа и 100-300 мкг фактора роста rhBMP-2. Биодеградация коллагена активирует находящийся в нем фактор роста, под воздействием которого происходит перестройка окружающих тканей. BMP (bone morphogenetic protein) - это плейотропные ростовые факторы, принадлежащие к суперсемейству β-трансформирующего фактора роста (TGF-β).
BMP регулируют три ключевые фазы остеогенеза: хемотаксис, митоз, дифференцировку. Также BMP регулируют гематопоэз, стимулируют синтез внеклеточного матрикса, влияют на поддержание жизнеспособности клеток. Укрепление бельма с помощью фактора роста rhBMP-2 позволяет надолго повысить биомеханические характеристики роговицы, восполнить дефицит ткани в случае истонченных бельм, повысить устойчивость тканей к ишемизации.
Таким образом, предложенный способ укрепления бельма по сравнению с существующими аналогами позволяет отказаться от использования трансплантатов из аутологичных тканей и успешно препятствовать развитию осложнений, таких как протрузия кератопротеза, за счет увеличения прочностных свойств исходных тканей самого бельма, образования новой соединительной ткани и улучшения обменных процессов, протекающих в бельме.
Способ прост в исполнении, не требует дорогостоящей аппаратуры и препаратов, может быть использован в экспериментальной медицине при разработке оперативных методов лечения ожоговых бельм.
Способ осуществляется следующим образом
В 4-5 мг/мл водного раствора коллагена I типа (производство фирмы «ИМТЕК», Москва) добавляли от 100 мкг до 300 мкг фактора роста rhBMP-2. Затем полученный гидрогель разливали в лунки 24-луночного планшета по 1,0 мл. Для формирования геля полученную смесь инкубировали при +37°C в течение 30 минут. Образованные коллагеновые гидрогели, извлеченные из планшета, отмывали в 500 мл фосфатного буферного раствора Рингера-Кребса при комнатной температуре в течение 24 часов, с заменой раствора каждые 8 часов. Далее гели выкладывали на поверхность и сушили их до полного высыхания потоком воздуха при +37°C. Полученные пленки регидратировали, высушивали, получая, таким образом, имплантат в виде, например, диска диаметром 9-12 мм и толщиной 0,2-0,5 мм.
Испытание проводилось на кроликах породы шиншилла весом 2,0-2,5 кг. Под общей и капельной анестезией производился разрез роговицы протяженностью 5 мм на 3/5 ее глубины концентрично лимбу. В данной плоскости формировали роговичный интраламеллярный карман, в который вводили заявленный имплантат. На разрез накладывались швы. У животных оперировали один глаз для сохранения ориентации в окружающем пространстве.
Предложенным способом было проведено укрепление бельма роговицы на 18 кроликах-самцах породы «шиншилла» с исходной массой тела 2,0-2,5 кг. Моделирование ожогового бельма проводилось за 6 месяцев до операции, на левом глазу животных путем аппликации на роговицу кролика хлопчатобумажного диска диаметром 10 мм, пропитанного 10% NaOH в течение 7 секунд, правый глаз был контрольным.
Клиническую оценку состояния глаз животных проводили по степени воспалительной реакции, васкуляризации роговицы (Ченцова Е.В., 1996), интенсивности помутнения роговицы (Войно-Ясенецкий В.В., 1953). Наблюдаемые изменения регистрировались путем фотографирования на фотощелевой лампе фирмы «Opton» (Германия).
Результаты эксперимента оценивали на предмет морфологии и биомеханики.
Пример 1
Кролику-самцу породы шиншилла, массой 3,5 кг, оперировали правый глаз. Выполняли ретробульбарную блокаду 0,5% новокаином. Производился разрез роговицы протяженностью 5 мм на 2/3 ее глубины концентрично лимбу. В данной плоскости при помощи расслаивателя формировали роговичный интрастромальный карман «от лимба до лимба». При помощи пинцета для завязывания и шпателя вводили имплантат, в виде диска диаметром 9 мм и толщиной 0,5 мм, состоящий из 4 мг коллагена I типа и 100 мкг фактора роста rhBMP-2 в полость сформированного кармана. На разрез накладывались швы. По окончании операции производили подконъюнктивальную инъекцию гентамицина сульфата 1,0% в объеме 0,5 мл. Далее в течение одной недели инстиллировали окомистин по 1 капле 2 раза в день.
Клиническую оценку состояния глаз животных проводили по степени воспалительной реакции, васкуляризации роговицы (Ченцова Е.В., 1996), интенсивности помутнения роговицы (Войно-Ясенецкий В.В., 1953). Наблюдаемые изменения регистрировались путем фотографирования на фотощелевой лампе фирмы «Opton» (Германия).
Результаты экспериментов оценивали морфологически. Роговую оболочку вырезали по окружности лимба, а затем фиксировали ее в формалине в течение суток. Полученный диск роговицы разрезали пополам, перпендикулярно по отношению к сосудам. Оба фрагмента обезвоживали в спиртах восходящей концентрации и заливали в парафин. Срезы толщиной 8-10 мкм изготавливали на микротоме и окрашивали гематоксилином и эозином. Исследование срезов роговицы проводили под световым микроскопом при 16- и 40-кратном увеличении.
Для исследования биомеханических характеристик роговую оболочку вырезали по окружности, захватывая при этом участок склеры, отступая 3 мм от лимба. Для чистоты эксперимента использовали свежевыкроенные ткани животных, полученные непосредственно перед проведением исследования. Полученный диск роговицы зажимали между двух металлических пластин с отверстием в центре, соответствующем диаметру роговицы, таким образом, чтобы фиксация происходила за ткань склеры, а роговица была интактной. Готовую конструкцию опускали в физиологический раствор, чтобы препятствовать высыханию тканей во время исследования. Оценку биомеханических свойств проводили при помощи исследования тканей на прокол на разрывных машинах фирмы «Instron».
В раннем послеоперационном периоде отмечено наличие незначительного отека роговицы. Отек был слабо выражен и обусловлен, по всей видимости, наличием операционной травмы. Клинических признаков острого инфекционного поражения окружающих тканей при осмотре не обнаружено. На 9-й день отмечалось появление новообразованных сосудов эксцентрично лимбу, с последующим нарастанием их числа и увеличением калибра сосудов. На 34-й день отмечалась стойкая стабилизация клинической картины. Через 2 месяца клинически значимых изменений не отмечалось. К концу периода наблюдения (90 дней) у кролика наблюдалась васкуляризация и утолщение тканей роговицы до 0,6 мм. Гистологическое исследование области трансплантата показало его частичное разволокнение и замещение новообразованной соединительной тканью, местами в него врастают сосуды. Роговица значительно утолщена. Исследование биомеханических свойств показало повышение прочностных характеристик тканей в 4,5 раза.
Пример 2
Кролику-самцу породы шиншилла, массой 3,5 кг, оперировали правый глаз. Выполняли ретробульбарную блокаду 0,5% новокаином. Производился разрез роговицы протяженностью 5 мм на 2/3 ее глубины концентрично лимбу. В данной плоскости при помощи расслаивателя формировали роговичный интрастромальный карман «от лимба до лимба». При помощи пинцета для завязывания и шпателя вводили имплантат, в виде диска диаметром 12 мм и толщиной 0,2 мм, состоящий из 5 мг коллагена I типа и 300 мкг фактора роста rhBMP-2 в полость сформированного кармана. На разрез накладывались швы. По окончании операции производили подконъюнктивальную инъекцию гентамицина сульфата 1,0% в объеме 0,5 мл. Далее в течение одной недели инстиллировали окомистин по 1 капле 2 раза в день.
Клиническую оценку состояния глаз животных, морфологические исследования и оценку биомеханических характеристик проводили согласно примеру 1.
В раннем послеоперационном периоде отмечено наличие незначительного отека роговицы. Отек был слабо выражен и обусловлен, по всей видимости, наличием операционной травмы. Клинических признаков острого инфекционного поражения окружающих тканей при осмотре не обнаружено. На 7-й день отмечалось появление новообразованных сосудов эксцентрично лимбу, с последующим нарастанием их числа и увеличением калибра сосудов. К концу первого месяца отмечалась стойкая стабилизация клинической картины. Через 2 месяца клинически значимых изменений не отмечалось. К концу периода наблюдения (90 дней) у кролика наблюдалась васкуляризация и утолщение тканей роговицы до 0,7 мм. Гистологическое исследование области трансплантата показало его частичное разволокнение и замещение новообразованной соединительной тканью, местами в него врастают сосуды. Роговица значительно утолщена. Исследование биомеханических свойств показало повышение прочностных характеристик тканей в 4,5 раза.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ КЕРАТОПРОТЕЗИРОВАНИЯ ПРИ ОЖОГОВЫХ БЕЛЬМАХ | 2017 |
|
RU2655111C1 |
Способ кератопротезирования при истонченных ожоговых бельмах | 2018 |
|
RU2671515C1 |
СПОСОБ ПОДГОТОВКИ ОЖОГОВОГО БЕЛЬМА РОГОВИЦЫ К КЕРАТОПРОТЕЗИРОВАНИЮ | 2014 |
|
RU2570041C1 |
ИСКУССТВЕННАЯ РОГОВИЦА, ПРЕДСТАВЛЯЮЩАЯ СОБОЙ МЕМБРАНУ ГЕТЕРОГЕННОЙ ЖЕСТКОСТИ НА ОСНОВЕ КОЛЛАГЕНА, И СПОСОБ ЕЕ ПОЛУЧЕНИЯ И ПРИМЕНЕНИЯ | 2019 |
|
RU2714943C1 |
СПОСОБ ЛЕЧЕНИЯ ВАСКУЛЯРИЗИРОВАННЫХ БЕЛЬМ | 1995 |
|
RU2126670C1 |
СПОСОБ КЕРАТОПРОТЕЗИРОВАНИЯ ОСЛОЖНЕННЫХ СОСУДИСТЫХ БЕЛЬМ 4-5 КАТЕГОРИИ | 2013 |
|
RU2523342C1 |
ИМПЛАНТАТ ДЛЯ УКРЕПЛЕНИЯ РОГОВИЦЫ | 2004 |
|
RU2270642C1 |
СПОСОБ ХИРУРГИЧЕСКОГО ЛЕЧЕНИЯ ТРОФИЧЕСКОЙ ЯЗВЫ РОГОВИЦЫ | 2009 |
|
RU2421197C1 |
Однородная прозрачная коллагеновая мембрана, способ ее получения и ее применение для восстановления роговицы | 2021 |
|
RU2779361C1 |
СПОСОБ СОЗДАНИЯ МОДЕЛИ ХИМИЧЕСКОГО ОЖОГА РОГОВОЙ ОБОЛОЧКИ | 1995 |
|
RU2119685C1 |
Изобретение относится к медицине, а именно к офтальмологии, и может быть использовано в экспериментальной медицине в целях укрепления тканей бельма на различных этапах кератопротезирования. У экспериментальных животных производят разрез роговицы концентрично лимбу. Формируют роговичный интрастромальный карман, в который вводят имплантат в виде диска, диаметром 9-12 мм и толщиной 0,2-0,5 мм, состоящий из 4-5 мг коллагена I типа и 100-300 мкг фактора роста rhBMP-2. Способ позволяет повысить биомеханические свойства роговицы в эксперименте, создать благоприятную почву для дальнейшего кератопротезирования, что приводит к уменьшению операционных и послеоперационных осложнений при лечении ожоговых бельм роговицы. 2 пр.
Способ укрепления бельма роговицы в эксперименте, включающий использование имплантата, изготовленного из коллагена, отличающийся тем, что у экспериментальных животных производят разрез роговицы концентрично лимбу, затем формируют роговичный интрастромальный карман, в который вводят имплантат в виде диска, диаметром 9-12 мм и толщиной 0,2-0,5 мм, состоящий из 4-5 мг коллагена I типа и 100-300 мкг фактора роста rhBMP-2.
ГУНДОРОВА Р.А | |||
и др., Перспективы использования тканеинженерной конструкции на основе культивированных аутологичных хондроцитов на этапах подготовки бельма к кератопротезированию, Российский офтальмологический журнал - 2014 | |||
- Т | |||
Способ восстановления хромовой кислоты, в частности для получения хромовых квасцов | 1921 |
|
SU7A1 |
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. | 1921 |
|
SU3A1 |
- С | |||
Разборное приспособление для накатки на рельсы сошедших с них колес подвижного состава | 1920 |
|
SU65A1 |
СПОСОБ ЛЕЧЕНИЯ ВАСКУЛЯРИЗИРОВАННЫХ БЕЛЬМ | 1995 |
|
RU2126670C1 |
СПОСОБ ПОДГОТОВКИ ОЖОГОВОГО БЕЛЬМА РОГОВИЦЫ К КЕРАТОПРОТЕЗИРОВАНИЮ | 2014 |
|
RU2570041C1 |
БЕЛЯЕВ Д.С | |||
и др., Искусственный эквивалент аутохрящевой ткани: создание и перспективы его применения для укрепления бельма перед кератопротезированием, III НПК по офтальмологии с международным участием "Восток-Запад", сб.научных трудов, Уфа, 2012, с | |||
Способ применения резонанс конденсатора, подключенного известным уже образом параллельно к обмотке трансформатора, дающего напряжение на анод генераторных ламп | 1922 |
|
SU129A1 |
Авторы
Даты
2017-03-16—Публикация
2016-02-11—Подача