СПЛАВ НА ОСНОВЕ ТИТАНА И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО Российский патент 2017 года по МПК C22C14/00 

Описание патента на изобретение RU2614355C1

Изобретение относится к области цветной металлургии, а именно к титановым сплавам, применяемым для изготовления высоконагруженных деталей и узлов, работающих при температурах до 600°С, например для изготовления деформированных полуфабрикатов в виде дисковых и лопаточных заготовок для деталей компрессора газотурбинных двигателей (ГТД).

Из /RU 2039112 Сl, 09.07.1995/ известен сплав на основе титана, имеющий следующий химический состав, мас. %:

алюминий 5,8-6,6 молибден 0,8-1,5 цирконий 2,0-4,0 железо 0,06-0,13 кремний 0,25-0,45 олово 2,5-4,5 ниобий 0,8-2,5 кислород 0,05-0,12 углерод 0,05-0,1 вольфрам 0,35-0,8 титан остальное

Недостатком сплава является относительно низкий уровень прочности в интервале температур от 20 до 550°С и узкий температурный интервал обработки давлением в двухфазной области (≈100°С).

Из /CN 101988167 А, 23.03.2010/ известен сплав на основе титана, имеющий следующий химический состав, мас. %:

алюминий 6,2-6,5 цирконий 3,5-4,0 олово 2,0-2,5 молибден 0,1-0,3 ниобий 0,6-0,9 кремний 0,3-0,4 неодим 0,4-0,8 титан остальное

Недостатком сплава является низкий уровень прочностных свойств при комнатной и повышенных температурах, недостаточный уровень технологической пластичности при обработке давлением, что ограничивает применение сплава лишь сравнительно крупногабаритными поковками и штамповками, изготавливаемыми деформацией при высоких температурах.

Наиболее близким аналогом по составу и назначению является сплав на основе титана, раскрытый в /RU 2507289 С1, 20.02.2014/, который имеет следующий химический состав, мас. %:

алюминий 5,0-6,6 молибден 1,5-2,5 цирконий 1,0-2,8 ванадий 0,4-1,4 железо 0,08-0,40 кремний 0,08-0,28 олово 1,5-3,8 ниобий 0,4-1,2 кислород 0,02-0,18 углерод 0,008-0,080 титан остальное

Недостатком сплава-прототипа является недостаточно высокий уровень прочности при комнатной и повышенных температурах. Высокий уровень пластичности может свидетельствовать о недостаточно высоких эксплуатационных характеристиках при повышенной температуре, в том числе кратковременной и длительной прочности при 600°С, что связано с недостаточной степенью дисперсионного и твердорастворного упрочнения α-и β-твердых растворов сплава.

Техническим результатом заявленного изобретения является повышение уровня кратковременной прочности титанового сплава при температуре 20°С на 4,0-7,5% и при 6000°С на 8,5-11,5% относительно прототипа при сохранении пластичности при 20°С на удовлетворительном уровне.

Для достижения поставленного технического результата предложен сплав на основе титана, содержащий алюминий, молибден, олово, цирконий, железо, ниобий, кремний, при этом он дополнительно содержит тантал, вольфрам и бериллий при следующем соотношении компонентов, мас. %:

алюминий 6,0-8,0 молибден 0,4-1,3 олово 1,5-3,5 цирконий 1,0-5,0 железо 0,05-0,4 ниобий 0,4-1,4 кремний 0,1-0,4 тантал 0,2-1,0 вольфрам 0,3-1,3 бериллий 0,01-0,15 титан остальное

Также предложено изделие, выполненное из этого сплава.

Для достижения высокого уровня комплекса физико-механических свойств (прочности, жаропрочности, термической стабильности и технологичности) в сплав в указанном количестве были введены тантал, вольфрам и бериллий, являющиеся β-стабилизаторами. Данные элементы повышают сопротивление сплава окислению, температуру рекристаллизации и оказывают модифицирующее воздействие, повышающее уровень кратковременной прочности при повышенных температурах.

Сплав содержит близкое для жаропрочных титановых сплавов к предельно возможному количество α-стабилизирующего легирующего элемента (алюминий) и нейтральных упрочнителей (олово, цирконий), позволяющих обеспечить его высокую термостабильность и жаропрочность. Дальнейшее увеличение их количества в сплаве неизбежно приведет к снижению термической стабильности, а уменьшение их количества вызовет падение жаропрочных свойств.

Легирование сплава β-стабилизаторами (молибден, ниобий, тантал, вольфрам, железо) в указанных пределах позволяет повысить за счет твердорастворного упрочнения уровень кратковременной прочности при 20°С и обеспечить необходимый уровень его технологической пластичности при обработке давлением в верхнем температурном интервале (α+β)-области.

Поскольку жаропрочные сплавы в большинстве случаев при рабочей температуре характеризуются метастабильным фазовым составом, существенную роль для них приобретают процессы высокотемпературной диффузии и рекристаллизации. Подавление или замедление этих процессов позволяет повысить не только термостабильность сплава, но и его жаропрочность и жаростойкость. С данной целью в сплав введены Та и W, которые повышают температуру рекристаллизации приблизительно на 50°С и, следовательно, тормозят процессы распада метастабильных структур. Кроме этого, тантал, имея высокое сродство к кислороду, препятствует его диффузии в кристаллической решетке. Также тантал повышает сопротивление сплава проникающему окислению.

Кремний в указанном количестве позволяет реализовать одновременно твердорастворный и дисперсионный механизмы упрочнения благодаря наличию в структуре сплава силицидов. За счет своей высокой термической стабильности силициды позволяют повысить жаропрочность сплава. При меньшем содержании кремния количество силицидов недостаточно для значимого повышения жаропрочности, а при превышении указанного количества образуется слишком большое количество крупных выделений силицидов, снижающих пластичность, технологичность сплава и характеристики его длительной работоспособности.

Микродобавки бериллия обеспечивают модифицирующее воздействие на структуру сплава, что приводит к получению более мелкодисперсной и однородно распределенной в объеме полуфабриката структуры. Введение бериллия в меньшем количестве не оказывает необходимого модифицирующего воздействия. Добавление большего количества бериллия в сплав нецелесообразно, поскольку в данном случае потребуется обеспечить специальные меры по организации производства и защите персонала от его негативного воздействия. По причине очень низкой растворимости бериллия в α-фазе титана введение в сплав бериллия в большем количестве приводит к образованию большого количества частиц интерметаллидов, приводящих к охрупчиванию сплава и снижению его технологичности.

Примеры осуществления

Предлагаемый сплав и сплав-прототип в виде слитков выплавляли методом тройного вакуумно-дугового переплава. Затем слитки подвергали деформационной обработке путем осадки и всесторонней ковки в квазиизотермических условиях на сутунки. Полученные сутунки были подготовлены под прокатку путем строгания по всем поверхностям. После прокатки и резки на полосы они были осажены в квазиизотермических условиях на профилированные заготовки, которые подвергались окончательной термической обработке и испытаниям.

В таблице 1 приведен химический состав выплавленных слитков.

Далее определяли следующие характеристики полученных полуфабрикатов:

- предел прочности и относительное удлинение образцов при температуре 20°С определяли путем проведения испытаний на растяжение по ГОСТ 1497;

- предел прочности и относительное удлинение образцов при температуре 600°С определяли путем проведения испытаний на растяжение по ГОСТ 9651.

В таблице 2 приведены механические свойства предлагаемого сплава и сплава-прототипа.

Как видно из таблицы 2, в предлагаемом сплаве по сравнению со сплавом-прототипом повысился уровень предела прочности при температуре 20°С на 4,0-7,5% и при 600°С на 8,5-11,5% при сохранении пластичности при 20°С на удовлетворительном уровне.

Предлагаемый сплав может быть применен в качестве жаропрочного материала для изготовления деталей (лопаток и дисков) компрессора авиационных газотурбинных двигателей, а также деталей турбин энергетического машиностроения. Изобретение позволит повысить ресурс деталей и весовую эффективность двигателей ГТД за счет более высокого по сравнению с аналогами уровня прочности при рабочей температуре до 600°С.

Похожие патенты RU2614355C1

название год авторы номер документа
Жаропрочный свариваемый сплав на основе никеля и изделие, выполненное из него 2021
  • Каблов Евгений Николаевич
  • Мазалов Иван Сергеевич
  • Ломберг Борис Самуилович
  • Расторгуева Ольга Игоревна
  • Ахмедзянов Максим Вадимович
RU2777099C1
ЖАРОПРОЧНЫЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ ДЛЯ ИЗГОТОВЛЕНИЯ ДЕТАЛЕЙ КОТЛОВ И ПАРОВЫХ ТУРБИН, РАБОТАЮЩИХ ПРИ УЛЬТРАСВЕРХКРИТИЧЕСКИХ ПАРАМЕТРАХ ПАРА 2017
  • Скоробогатых Владимир Николаевич
  • Лубенец Владимир Платонович
  • Козлов Павел Александрович
  • Логашов Сергей Юрьевич
  • Яковлев Евгений Игоревич
RU2637844C1
ЖАРОПРОЧНЫЙ ДЕФОРМИРУЕМЫЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ ЭТОГО СПЛАВА 2014
  • Каблов Евгений Николаевич
  • Бакрадзе Михаил Михайлович
  • Ломберг Борис Самуилович
  • Овсепян Сергей Вячеславович
  • Лимонова Елена Николаевна
  • Чабина Елена Борисовна
  • Филонова Елена Владимировна
  • Хвацкий Константин Константинович
RU2571674C1
ЖАРОПРОЧНЫЙ СПЛАВ НА ОСНОВЕ ТИТАНА И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО 2014
  • Каблов Евгений Николаевич
  • Ночовная Надежда Алексеевна
  • Алексеев Евгений Борисович
  • Новак Анна Викторовна
RU2592657C2
ЖАРОПРОЧНАЯ СТАЛЬ МАРТЕНСИТНОГО КЛАССА 2011
  • Кайбышев Рустам Оскарович
  • Дудова Надежда Рузилевна
RU2447184C1
ЖАРОПРОЧНЫЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ ДЛЯ ИЗГОТОВЛЕНИЯ ЛОПАТОК ГАЗОТУРБИННЫХ УСТАНОВОК 2014
  • Авдюхин Сергей Павлович
  • Дуб Алексей Владимирович
  • Квасницкая Юлия Георгиевна
  • Ковалев Геннадий Дмитриевич
  • Кульмизев Александр Евгеньевич
  • Лубенец Владимир Платонович
  • Скоробогатых Владимир Николаевич
RU2538054C1
ДЕФОРМИРУЕМЫЙ ЖАРОПРОЧНЫЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ 2019
  • Храмин Роман Владимирович
  • Буров Максим Николаевич
  • Логунов Александр Вячеславович
  • Данилов Денис Викторович
  • Лещенко Игорь Алексеевич
  • Заводов Сергей Александрович
  • Михайлов Александр Михайлович
  • Михайлов Михаил Александрович
  • Мухтаров Шамиль Хамзаевич
  • Мулюков Радик Рафикович
RU2695097C1
ЖАРОПРОЧНЫЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ ДЛЯ ИЗГОТОВЛЕНИЯ ЛОПАТОК ГАЗОТУРБИННЫХ УСТАНОВОК И СПОСОБ ЕГО ТЕРМИЧЕСКОЙ ОБРАБОТКИ 2014
  • Авдюхин Сергей Павлович
  • Дуб Алексей Владимирович
  • Квасницкая Юлия Георгиевна
  • Ковалев Геннадий Дмитриевич
  • Кульмизев Александр Евгеньевич
  • Лубенец Владимир Платонович
  • Мяльница Георгий Филиппович
  • Скоробогатых Владимир Николаевич
RU2539643C1
СПЛАВ НА ОСНОВЕ ГАММА-АЛЮМИНИДА ТИТАНА 2016
  • Каблов Евгений Николаевич
  • Ночовная Надежда Алексеевна
  • Каблов Дмитрий Евгеньевич
  • Панин Павел Васильевич
RU2614354C1
СПЛАВ НА НИКЕЛЕВОЙ ОСНОВЕ ДЛЯ ЛИТЬЯ МОНОКРИСТАЛЛИЧЕСКИХ ЛОПАТОК ТУРБИНЫ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ 2007
  • Елисеев Юрий Сергеевич
  • Поклад Валерий Александрович
  • Оспенникова Ольга Геннадиевна
  • Андриенко Анатолий Георгиевич
  • Гайдук Сергей Валентинович
  • Орлов Михаил Романович
  • Кононов Виталий Владиславович
RU2354733C1

Реферат патента 2017 года СПЛАВ НА ОСНОВЕ ТИТАНА И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО

Изобретение относится к области металлургии, а именно к сплавам на основе тинана, и может быть использовано при изготовлении тяжелонагруженных деталей и узлов, работающих при температуре до 600°С. Сплав на основе титана содержит, мас. %: алюминий 6,0-8,0, молибден - 0,4-1,3, олово - 1,5-3,5, цирконий 1,0-5,0, железо - 0,05-0,4, ниобий - 0,4-1,4, кремний - 0,1-0,4, тантал - 0,2-1,0, вольфрам - 0,3-1,3, бериллий - 0,01-0,15, титан - остальное. Сплав характеризуется высокими значениями кратковременной прочности при температурах 20°С и 600°С. 2 н.п. ф-лы, 2 табл., 4 пр.

Формула изобретения RU 2 614 355 C1

1. Сплав на основе титана, содержащий алюминий, молибден, олово, цирконий, железо, ниобий и кремний, отличающийся тем, что он дополнительно содержит тантал, вольфрам и бериллий при следующем соотношении компонентов, мас. %:

алюминий 6,0-8,0 молибден 0,4-1,3 олово 1,5-3,5 цирконий 1,0-5,0 железо 0,05-0,4 ниобий 0,4-1,4 кремний 0,1-0,4 тантал 0,2-1,0 вольфрам 0,3-1,3 бериллий 0,01-0,15 титан остальное

2. Изделие, выполненное из сплава на основе титана, отличающееся тем, что оно выполнено из сплава по п. 1.

Документы, цитированные в отчете о поиске Патент 2017 года RU2614355C1

СПЛАВ НА ОСНОВЕ ТИТАНА И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО 2013
  • Кашапов Олег Салаватович
  • Павлова Тамара Васильевна
  • Ночовная Надежда Алексеевна
  • Истракова Анастасия Романовна
RU2507289C1
СПЛАВ НА ОСНОВЕ ТИТАНА 2012
  • Кашапов Олег Салаватович
  • Павлова Тамара Васильевна
  • Ночовная Надежда Алексеевна
  • Истракова Анастасия Романовна
RU2484166C1
US 6551371 B1, 22.04.2003
Очаг для массовой варки пищи, выпечки хлеба и кипячения воды 1921
  • Богач Б.И.
SU4A1
US 2867534 A, 06.01.1959
US 3510295 A, 05.05.1970.

RU 2 614 355 C1

Авторы

Каблов Евгений Николаевич

Ночовная Надежда Алексеевна

Алексеев Евгений Борисович

Ширяев Андрей Александрович

Даты

2017-03-24Публикация

2016-03-17Подача