СПОСОБ ПОЛУЧЕНИЯ ГРАНУЛИРОВАННОГО КАТАЛИЗАТОРА ЭПОКСИДИРОВАНИЯ ОЛЕФИНОВ ПОВЫШЕННОЙ ПРОЧНОСТИ Российский патент 2017 года по МПК B01J37/04 B01J29/89 

Описание патента на изобретение RU2618528C1

Изобретение относится к области гетерогенного катализа, а именно к способу получения гранулированного катализатора для эпоксидирования олефинов, в качестве которого используется силикалит титана.

Из уровня техники известен способ получения катализатора эпоксидирования, включающий предварительное получение силикалита титана и его формование, заключающееся в смешении порошка силикалита титана со связующим компонентом из оксида алюминия, диоксида кремния, гидролизуемых кремниевых составов и частичных или полных продуктов их гидролиза (составов бора, фосфорсодержащих соединений, глинистых полезных ископаемых и их смесей), а также пастообразователем, формование массы с получением гранул, сушку и прокаливание при температуре 500-750°С [патент ЕР №1268058 А1, опубл. 02.01.2003].

Однако данный способ получения гранулированного титансодержащего катализатора обладает следующими недостатками: невысокая механическая прочность гранул и использование большого количества связующего компонента.

Наиболее близким аналогом заявленного изобретения является способ получения гранулированного катализатора, в котором используют предпочтительно титансодержащие цеолиты с MFI-, MEL-, или MFI/MEL- структурами. В этом способе в качестве связующего компонента применяют оксид алюминия (25-45 мас.%), порообразователь - полистирол (25-55 мас.%), пастообразующие добавки - целлюлоза или поливиниловый спирт. После формования массы смесь пластифицируют, экструдируют, сушат и прокаливают (при температуре от 400 до 800°С) [патент RU №2353580 С2, опубл. 27.04.2009].

Недостатком этого способа является необходимость использования большого количества связующего компонента - Al2O3. Это неизбежно приводит к снижению доли активного компонента и увеличению кислотности получаемого катализатора, что является нежелательным в процессах окисления, а также применение высоких температур на стадии прокаливания, приводящих к разрушению каталитических центров титансодержащего цеолита и увеличению энергетических затрат на производство гранулята.

Технический результат настоящего изобретения заключается в повышении механической прочности и каталитической активности гранулированного силикалита титана в реакциях эпоксидирования олефинов.

Технический результат достигается способом получения гранулированного катализатора эпоксидирования олефинов повышенной прочности, включающим смешение порошкообразного силикалита титана со связующим компонентом, формование, сушку и прокаливание гранул, в котором в качестве связующего компонента используют основную соль оксалата алюминия в количестве от 5 до 25 мас.% в расчете на сухой цеолит.

Порошкообразный силикалит титана типа MFI смешивают со связующим компонентом, взятым в количестве 5-25 мас.% в расчете на сухой силикалит титана. Смесь перемешивают в течение 15-60 минут, после чего к ней добавляют воду 20-80 мас.% (в расчете на сухой силикалит титана) и продолжают перемешивание еще 30-40 минут до получения пластичной, хорошо формуемой массы. Эту пасту экструдируют через фильеру шнекового гранулятора. Полученные экструдаты - цилиндры диаметром 2-5 мм и длиной 5-8 мм подсушивают на воздухе при комнатной температуре в течение 2-3 часов, а затем подвергают термической обработке при температуре 100-120°С до влажности не более 35%. После удаления большей части воды на стадии сушки гранулы подвергают прокаливанию при температуре 250-550°С в течение 4-5 часов.

Превышение влажности образцов, направляемых на прокаливание, более 35% приводит в процессе сушки в интервале температур 250-550°С к растрескиванию образцов и снижению механической прочности за счет интенсивного удаления воды.

Сущность предлагаемого изобретения иллюстрируется следующими примерами.

Пример 1

Способ получения гранулированного катализатора эпоксидирования олефинов повышенной прочности включает несколько стадий.

1.1 Получение порошкообразного силикалита титана

208 г тетраэтилортосиликата помещают в 3-литровый реактор, добавляют с перемешиванием 8,5 г тетрабутилортотитаната и образовавшуюся смесь охлаждают до приблизительно 1-2°С. Далее с перемешиванием при этой температуре в течение примерно 5 часов, добавляют раствор, включающий 364,5 г тетра-н-пропиламмонийгидроксида, концентрацией 40 мас.% и 257 г деионизированной воды. С целью завершения гидролиза и для отгонки образовавшегося этанола реакционную смесь нагревают вначале до температуры приблизительно 80°С, а затем выдерживают при температуре максимум 95°С в течение примерно 3 часов.

Далее полученный золь помещают в автоклав, закрепленный на качалке, совершающей возвратно-поступательные движения со скоростью 2 с-1 при амплитуде 0,05 м, и выдерживают при температуре 170°С в течение 40 часов, продолжая перемешивание. После охлаждения образовавшейся суспензии полученное твердое вещество выделяют центрифугированием из сильноосновного маточного раствора, промывают водой до рН 7-8, сушат в течение 12 часов при температуре 120°С под вакуумом (20 мм рт.ст.), после чего прокаливают при температуре 550°С в течение 6 часов в муфельной печи.

1.2 Получение оксалата алюминия

В реактор, снабженный рубашкой для подогрева, помещают 100 г свежеосажденной отмытой влажной гидроокиси алюминия (содержание Al(ОН)3 в пульпе 18 мас.%) и постепенно при перемешивании добавляют 21,8 г 40%-ной щавелевой кислоты, до полного перехода образовавшейся основной соли оксалата алюминия в раствор. Для ускорения взаимодействия кислоты с осадком гидроокиси реактор нагревают до температуры 50°С.

Полученный раствор концентрируют упариванием при температуре 105°С до постоянной массы.

1.3 Получение гранулированного силикалита титана повышенной прочности

35 г порошка силикалита титана с пространственной структурой MFI, полученного согласно п. 1.1 примера 1, смешивают с 5,9 г (16,8 мас.%) оксалата алюминия, полученного согласно п. 1.2 примера 2. Смесь порошков перемешивают в течение 10 минут, а затем порционно добавляют 29,6 г воды и продолжают перемешивание еще в течение 30 минут.

Полученную массу загружают в экструдер и продавливают через фильеру, имеющую отверстия диаметром 3 мм, получают цилиндрические гранулы.

Полученный таким образом гранулированный силикалит титана подсушивают на воздухе при комнатной температуре в течение 2 часов, а затем направляют в конвекционную сушилку, где высушивают до влажности не более 25%. Температуру в сушилке поддерживают на уровне 110°С .Затем образцы подвергают прокаливанию при температуре 550°С в течение 4 часов.

Механическая прочность полученного силикалита титана - 82,3 кгс/см2.

Каталитическая активность силикалита титана, полученного согласно примеру 1, в процессах эпоксидирования олефинов пероксидом водорода следующая: выход оксида пропилена - 92%, выход эпихлоргидрина - 90%, выход глицидола - 85% при количественном превращении пероксида водорода.

Пример 2

При использовании связующего в количестве менее 5% наблюдается снижение прочностных характеристик образцов гранулированного катализатора.

Механическая прочность таких образцов составляет 17,2 кгс/см2. Каталитическая активность силикалита титана в процессах эпоксидирования олефинов пероксидом водорода следующая: выход оксида пропилена - 91%, выход эпихлоргидрина - 89%, выход глицидола - 84% при количественном превращении пероксида водорода.

Пример 3

При содержании связующего компонента в смеси более 25% прочность образцов увеличивается, однако применение такого гранулированного силикалита титана в качестве катализатора процессов окисления невозможно из-за низких каталитических характеристик.

При получении гранулированного силикалита титана с содержанием связующего компонента 30% механическая прочность образцов составляет 83,1 кгс/см2. Каталитическая активность силикалита титана в процессах эпоксидирования олефинов пероксидом водорода следующая: выход оксида пропилена - 58%, выход эпихлоргидрина - 55%, выход глицидола 47% при количественном превращении пероксида водорода.

Пример 4

Гранулированный силикалит титана, полученный при влажности образцов, направляемых на прокаливание, 40% имеет механическую прочность образцов 31,1 кгс/см2.

Каталитическая активность силикалита титана в процессах эпоксидирования олефинов пероксидом водорода следующая: выход оксида пропилена - 87%, выход эпихлоргидрина - 84%, выход глицидола 78% при количественном превращении пероксида водорода.

Похожие патенты RU2618528C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ ГРАНУЛИРОВАННОГО ТИТАНСОДЕРЖАЩЕГО ЦЕОЛИТА 2010
  • Данов Сергей Михайлович
  • Сулимов Александр Владимирович
  • Овчаров Александр Александрович
  • Сулимова Анна Владимировна
RU2422360C1
СПОСОБ ПОЛУЧЕНИЯ ЭПИХЛОРГИДРИНА 2016
  • Флид Виталий Рафаилович
  • Леонтьева Светлана Викторовна
  • Дураков Сергей Алексеевич
  • Сулимов Александр Владимирович
  • Данов Сергей Михайлович
  • Овчарова Анна Владимировна
  • Флид Марк Рафаилович
  • Трушечкина Марина Александровна
RU2628801C1
СПОСОБ ЭПОКСИДИРОВАНИЯ ОЛЕФИНОВ 2003
  • Бергес Хосе
  • Брассе Клаудиа
  • Айккхофф Хубертус
  • Хаас Томас
  • Хофен Вилли
  • Кампайс Перси
  • Морофф Геральд
  • Поль Вернер
  • Штохниоль Гуидо
  • Тиле Георг
  • Улльрих Норберт
  • Вёлль Вольфганг
RU2322442C2
ФОРМОВАННОЕ ИЗДЕЛИЕ, СОДЕРЖАЩЕЕ ЦЕОЛИТНЫЙ МАТЕРИАЛ, ИМЕЮЩИЙ ТИП КАРКАСНОЙ СТРУКТУРЫ MFI 2019
  • Парвулеску, Андрей-Николае
  • Лютцель, Ханс-Юрген
  • Мюллер, Ульрих
  • Ридель, Доминик
  • Телес, Йоаким Энрике
  • Вебер, Маркус
RU2808562C2
ПОЛУЧЕНИЕ ПОРОШКООБРАЗНЫХ ПОРИСТЫХ КРИСТАЛЛИЧЕСКИХ СИЛИКАТОВ МЕТАЛЛОВ С ИСПОЛЬЗОВАНИЕМ ПЛАМЕННОГО СПРЕЙ-ПИРОЛИЗА 2018
  • Шмидт Франц
  • Антон Йохан
  • Паскали Маттиас
  • Хайнрот Андреа
  • Виланд Штефан
  • Морелль Хайко
  • Крес Петер
  • Хагеман Михаэль
RU2804511C2
СПОСОБ ПРИГОТОВЛЕНИЯ ФОРМОВАННОГО СИЛИКАЛИТА ТИТАНА 2009
  • Данов Сергей Михайлович
  • Лунин Алексей Владимирович
  • Есипович Антон Львович
  • Федосов Алексей Евгеньевич
RU2417837C1
СПОСОБ КАПСУЛИРОВАНИЯ СИЛИКАЛИТА ТИТАНА В ПОЛИМЕРНОЙ МАТРИЦЕ 2013
  • Данов Сергей Михайлович
  • Орехов Сергей Валерьевич
  • Федосов Алексей Евгеньевич
  • Федосова Марина Евгеньевна
  • Лунин Алексей Владимирович
RU2523547C1
СПОСОБ ПОЛУЧЕНИЯ ТИТАНСОДЕРЖАЩЕГО ЦЕОЛИТА 2001
  • Штеффен Хазенцаль
  • Клаус Хэйне
  • Дитер Кнайтель
RU2256613C2
КАТАЛИЗАТОР ОКИСЛЕНИЯ, СПОСОБ ЕГО ПОЛУЧЕНИЯ (ВАРИАНТЫ), СПОСОБ ПОЛУЧЕНИЯ ОКСИМОВ, СПОСОБ ГИДРОКСИЛИРОВАНИЯ АРОМАТИЧЕСКИХ УГЛЕВОДОРОДОВ И КАТАЛИТИЧЕСКИЙ СПОСОБ ОКИСЛЕНИЯ УГЛЕВОДОРОДОВ 1993
  • Райнер Шедель[De]
  • Петер Бирке[De]
  • Райнхард Гейер[De]
  • Петер Краак[De]
  • Вилибальд Мюллер[De]
  • Ханс-Дитер Нойбауер[De]
  • Рольф Пестер[De]
  • Фритц Фогт[De]
  • Клаус-Петер Вендландт[De]
RU2107545C1
СПОСОБ ЭПОКСИДИРОВАНИЯ С - С ОЛЕФИНОВ 1996
  • Гай Л. Крокко
  • Джон С. Джубин Мл
  • Джон Г. Заячек
RU2168504C2

Реферат патента 2017 года СПОСОБ ПОЛУЧЕНИЯ ГРАНУЛИРОВАННОГО КАТАЛИЗАТОРА ЭПОКСИДИРОВАНИЯ ОЛЕФИНОВ ПОВЫШЕННОЙ ПРОЧНОСТИ

Изобретение относится к области гетерогенного катализа, а именно к способу получения гранулированного катализатора эпоксидирования олефинов повышенной прочности, включающему смешение порошкообразного силикалита титана со связующим компонентом, в качестве которого используют основную соль оксалата алюминия в количестве от 5 до 25 мас.% в расчете на сухой цеолит, формование, сушку и прокаливание гранул. Перед прокаливанием гранулы подсушивают до влажности не более 35%. Изобретение обеспечивает повышение механической прочности и каталитической активности гранулированного силикалита титана в реакциях эпоксидирования олефинов. 4 пр.

Формула изобретения RU 2 618 528 C1

Способ получения гранулированного катализатора эпоксидирования олефинов повышенной прочности, включающий смешение порошкообразного силикалита титана со связующим компонентом, формование, сушку и прокаливание гранул, характеризующийся тем, что в качестве связующего компонента используют основную соль оксалата алюминия в количестве от 5 до 25 мас.% в расчете на сухой цеолит, и тем, что перед прокаливанием гранулы подсушивают до влажности не более 35%.

Документы, цитированные в отчете о поиске Патент 2017 года RU2618528C1

Данов С.М., Сулимов А.В
и др., Исследование процесса формирования титансодержащего цеолита, Катализ в промышленности, 2013, номер 1, стр.51-60
СПОСОБ ПОЛУЧЕНИЯ ГРАНУЛИРОВАННОГО ТИТАНСОДЕРЖАЩЕГО ЦЕОЛИТА 2010
  • Данов Сергей Михайлович
  • Сулимов Александр Владимирович
  • Овчаров Александр Александрович
  • Сулимова Анна Владимировна
RU2422360C1
US 7273826 B2, 25.09.2007.

RU 2 618 528 C1

Авторы

Флид Виталий Рафаилович

Леонтьева Светлана Викторовна

Брук Лев Григорьевич

Пастухова Жанна Юрьевна

Сулимов Александр Владимирович

Данов Сергей Михайлович

Овчарова Анна Владимировна

Овчаров Александр Александрович

Флид Марк Рафаилович

Трушечкина Марина Александровна

Даты

2017-05-04Публикация

2016-04-15Подача