СПОСОБ СЕЛЕКТИВНОГО ИЗВЛЕЧЕНИЯ ДОННАНОВСКИМ ДИАЛИЗОМ ИОНОВ ЭЛЕКТРОЛИТА ИЗ РАСТВОРА С ФЕНИЛАЛАНИНОМ Российский патент 2017 года по МПК B01D61/00 B01D61/46 

Описание патента на изобретение RU2618839C2

Изобретение относится к способу очистки аминокислот, в частности, от минеральных компонентов, содержащихся в промывных водах микробиологического производства.

Известны способы выделения и очистки аминокислот из смешанных растворов с минеральными солями ионным обменом [Ионообменные методы очистки веществ // Под ред. Г.А. Чикина, О.Н. Мягкова. Воронеж: ВГУ, 1984. 372 с.] и электромембранными методами [Заболоцкий В.И., Гнусин Н.П., Ельников Л.Ф. Исследование процесса глубокой очистки аминокислот от минеральных примесей электродиализом с ионообменными мембранами // Журн. прикл. химии. 1986. Т. 59. С. 140; Sato K., Sakairi Т., Yonemoto Т., Tadaki Т. The desalination of mixed solution of on amino acid and an inorganic salt by means of electrodialysis with charge-mosaic membranes // J. Membrane Sci. 1995. Vol. 100. Р. 209-216]. Недостатком ионного обмена является необходимость химической регенерации ионообменных мембран, которая приводит к загрязнению окружающей среды, а электродиализ требует высоких затрат электроэнергии. 1. Наиболее близким по совокупности признаков к описываемому способу является применение нейтрализационного диализа при извлечении электролитов [U.S. Patent 4769152, МПК B01D 61/24; C02F 1/469; опубл. 1988-09-06; 5. Denisov G.A. Theoretical analysis of neutralization dialysis in the three-compartment membrane cell / G.A. Denisov, G.A. Tishchenko, M. Bleha, L.K. Shataeva // J. Membr. Sci. - 1995. - V. 98, №1-2. - P. 13-25; Igawa M. Transport Characteristics of Neutralization Dialysis and Desalination of Tap Water / M. Igawa, K. Mikami, H. Okochi // Bull. Chem. Soc. Jpn. - 2003. - V. 76. - P. 437-441], разделении слабых кислот и оснований [Tanabe Н. Separation of Weak Acids and Bases by Neutralization dialysis / H. Tanabe, H. Okochi, M. Igawa // Ind. Eng. Chem. Res. - 1995. - V. 34. - P. 2450-2454]. В работе [Wang G. Transport of glycine by neutralization dialysis / G. Wang, H. Tanabe, M. Igawa // J. Membr. Sci. -1995. - V. 106. - P. 207-211] установлены возможные потери алифатической аминокислоты глицина через катионо- AMV и анионообменную CMV мембраны при нейтрализационном диализе ее индивидуального раствора.

Однако нейтрализационный диализ ранее не был использован как способ деминерализации смешанных растворов аминокислоты с солями.

Задача, на решение которой направлено данное изобретение, заключается в повышение эффективности разделения раствора смеси фенилаланина и хлорида натрия.

Технический результат заключается в способе селективного извлечения ионов электролита из смешанного раствора с фенилаланином стационарным нейтрализационным диализом с профилированными ионообменными мембранами разной природы фунциональных групп.

Технический результат достигается тем, что способ деминерализации нейтрализационным диализом смешанного раствора аминокислоты и соли включает подачу раствора смеси в среднюю секцию трехсекционного диализатора, ограниченную мембранами с разной природы фунциональных групп с геометрически неоднородной профилированной поверхностью, подачу раствора кислоты в режиме противотока через смежную с катионообменной мембраной секцию, а через смежную с анионообменной мембраной - раствора щелочи.

Предлагаемый способ предназначен для селективного извлечения ионов электролита из смешанных растворов хлорида натрия и фенилаланина нейтрализационным диализом с использованием катионообменной и анионообменной мембран с геометрически неоднородной профилированной поверхностью. Гетерогенная сильнокислотная сульфокатионообменная мембрана представляет собой композицию из полиэтилена и сульфированного сополимера стирола и дивинилбензола, гетерогенная анионообменная смешанной основности мембрана является продуктом поликонденсации полиэтиленполиамина с эпихлоргидриномом. Способ профилирования гетерогенных мембран в набухшем состоянии разработан и защищен патентом [Пат. РФ 2284851, МПК B01D 61/52, опубл. 10.10.2006]. Профилированные ионообменные мембраны отличаются улучшенными транспортными характеристиками за счет увеличения поверхности массообмена и возможности турбулизации потока раствора на элементах профиля. По сравнению с гладкой мембраной доля активной ионопроводящей поверхности для профилированных мембран больше в два-три раза, а влагоемкость на 30%. Мембраны кондиционировали в соответствии с общепринятой методикой [Березина Н. П. Физико-химические свойства ионообменных материалов: практикум. Краснодар: изд-во Кубанского гос. ун-та, 1999. 82 с. ], а затем переводили в требуемую ионную форму: катионообменную мембрану - в водородную, а анионообменную - в гидроксильную.

Способ деминерализации нейтрализационным диализом смешанных растворов фенилаланина и хлорида натрия выполняли в плоскокамерном диализаторе непрерывного действия, схема которого представлена на фиг. 1. Корпус диализатора был изготовлен из органического стекла и состоял из трех блоков-секций, разделенных катионообменной (МК) и анионообменной (МА) мембранами. Рабочая высота мембраны составляла 4,3 см, расстояние от мембраны до параллельной ей стенки кюветы составляло 0,6 см, ширина рабочей части мембраны 1,8 см. Исходный раствор (диализат) подавали в секцию 3 аппарата снизу вверх со скоростью 4,5⋅10-2 см/с, а через смежную с катионообменной мембраной приемную секцию 2 в режиме противотока пропускали раствор кислоты (диффузат), в секцию 1, смежную с анионообменной мембраной, - раствор щелочи (диффузат) со скоростью 5,8⋅10-3 см/с. Выбор соотношения скоростей обусловлен необходимостью получения воспроизводимых результатов при контроле изменения концентрации компонентов в секциях диализатора. Нейтрализационный диализ осуществляли в стационарном режиме, достижение стационарного состояния определялось по постоянству концентрации компонентов в вытекающем из приемной секции растворе (пермеате).

Модельные растворы готовили из реактивов классификации «ч.д.а.». Нейтрализационный диализ проводился из растворов, в которых аминокислота находилась преимущественно в виде биполярных ионов, так как величины pH исследуемых растворов имел значения 5,20-5,60, близкие к величине изоэлектрической точки фенилаланина pI=5,91. Выбранный диапазон концентраций хлорида натрия и фенилаланина в смешанных эквимолярных растворах составил 0,0010-0,1500 моль/дм3, максимальное значение концентрации ограничено растворимостью фенилаланина. Концентрации растворов соляной кислоты и гидроокиси натрия в диффузате составляли 0,3 М.

Контроль изменения концентрации аминокислоты в приемной секции осуществлялся спектрофотометрически на спектрофотометре СФ-46 при длине 257 нм, ионов натрия - методом эмиссионной фотометрии пламени на пламенно-фотометрическом анализаторе жидкостей ПАЖ-1, хлорид-ионов - методом аргентометрии.

На фиг. 2 представлены концентрационные зависимости потоков ионов натрия (1), хлорид-ионов (2) и фенилаланина (3, 4) при нейтрализационном диализе эквимолярных смесей через профилированные мембраны МК-40 (1, 3) и МА-40 (2, 4) при концентрации кислоты и щелочи в диффузате C0(HCl)=C0(NaOH)=0,3M.

Причиной значительного превышения потоков минеральных ионов по сравнению с аминокислотой во всем диапазоне концентраций является сохранение биполярной формы фенилаланина в растворе диализата, имеющего значение рН=5,80-6,50 вследствие переноса ионов водорода через катионообменную и гидроксид-ионов через анионообменную мембраны из растворов диффузата. При нейтрализационном диализе раствора смеси минерального компонента и аминокислоты между водородными противоионами катионообменника и катионами металла, а также между гидроксильными противоионами анионообменника и анионами металла протекают реакции ионного обмена. Ионы натрия (хлорид-ионы) из раствора диализата переходят через катионообменную (анионообменную) мембрану в раствор диффузата, а ионы водорода (гидроксила) кислоты (щелочи) переносятся в противоположном направлении.

Концентрационная зависимость фактора разделения SF биполярных ионов фенилаланина и минеральных ионов (хлорид-ионы - кривая 1, ионы натрия - кривая 2), вычисленного как отношение концентраций минерального компонента и аминокислоты в вытекающем из приемной секции растворе к их отношению в растворе, поступающему в исходную секцию, при нейтрализационном диализе их эквимолярных смесей представлена на фиг. 3.

С увеличением концентрации смешанных эквимолярных растворов хлорида натрия и фенилаланина наблюдалось падение фактора разделения как для катионообменной, так и для анионообменной мембран. Однако для всего исследуемого диапазона концентраций был характерен селективный перенос минеральных ионов по сравнению с аминокислотой, максимальные потери которой составили менее 0,3%.

Похожие патенты RU2618839C2

название год авторы номер документа
СПОСОБ ДЕМИНЕРАЛИЗАЦИИ НЕЙТРАЛИЗАЦИОННЫМ ДИАЛИЗОМ РАСТВОРА СМЕСИ АМИНОКИСЛОТЫ И СОЛИ 2015
  • Васильева Вера Ивановна
  • Голева Елена Алексеевна
  • Заболоцкий Виктор Иванович
  • Селеменев Владимир Федорович
  • Харин Алексей Николаевич
RU2607227C1
СПОСОБ РАЗДЕЛЕНИЯ МИНЕРАЛЬНОЙ СОЛИ И НЕЙТРАЛЬНОЙ АМИНОКИСЛОТЫ В РАСТВОРЕ ИХ СМЕСИ 2015
  • Васильева Вера Ивановна
  • Голева Елена Алексеевна
  • Акберова Эльмара Маликовна
RU2631798C2
СПОСОБ РАЗДЕЛЕНИЯ ФЕНИЛАЛАНИНА И ХЛОРИДА НАТРИЯ СТАЦИОНАРНЫМ ДИАЛИЗОМ 2010
  • Васильева Вера Ивановна
  • Заболоцкий Виктор Иванович
  • Шапошник Владимир Алексеевич
  • Селеменев Владимир Федорович
  • Воробьева Елена Алексеевна
  • Жильцова Анна Владимировна
RU2457894C1
СПОСОБ ОБЕССОЛИВАНИЯ РАСТВОРОВ НЕЙТРАЛЬНЫХ АМИНОКИСЛОТ 2016
  • Елисеева Татьяна Викторовна
  • Харина Анастасия Юрьевна
  • Шапошник Владимир Алексеевич
  • Кабанова Виктория Игоревна
RU2647739C1
СПОСОБ ПОЛУЧЕНИЯ ОБЕССОЛЕННОГО МОЛОКА И ОБЕССОЛЕННОЕ МОЛОКО 2010
  • Секи Нобуо
  • Киносита Кие
  • Саито Хитоси
  • Ониси Масатоси
  • Тамура Йоситака
  • Коисихара Хироси
  • Одака Миреи
RU2483559C2
СПОСОБ РАЗДЕЛЕНИЯ АМИНОКИСЛОТ И УГЛЕВОДОВ ЭЛЕКТРОДИАЛИЗОМ 2009
  • Елисеева Татьяна Викторовна
  • Крисилова Елена Викторовна
  • Орос Галина Юрьевна
  • Шапошник Владимир Алексеевич
RU2426584C2
СПОСОБ ИЗМЕНЕНИЯ ХАРАКТЕРИСТИК ЭЛЕКТРОДИАЛИЗАТОРА С ЧЕРЕДУЮЩИМИСЯ КАТИОНООБМЕННЫМИ И АНИОНООБМЕННЫМИ МЕМБРАНАМИ 2014
  • Лоза Наталья Владимировна
  • Лоза Сергей Алексеевич
  • Кононенко Наталья Анатольевна
RU2566415C1
МЕМБРАННЫЙ МОДУЛЬ 1992
  • Тищенко Галина Алексеевна[Ru]
  • Блега Мирослав[Cs]
  • Шатаева Лариса Константиновна[Ru]
RU2060802C1
СПОСОБ КОНЦЕНТРИРОВАНИЯ ОСНОВНЫХ АМИНОКИСЛОТ ЭЛЕКТРОДИАЛИЗОМ 2009
  • Елисеева Татьяна Викторовна
  • Крисилова Елена Викторовна
  • Орос Галина Юрьевна
  • Селеменев Владимир Федорович
  • Крисилов Алексей Викторович
  • Черников Михаил Алексеевич
  • Жеребятьева Галина Александровна
RU2412748C2
Способ очистки аминокислот 1989
  • Письменский Владимир Федорович
  • Заболоцкий Виктор Иванович
  • Сеничева Марина Алексеевна
SU1685481A1

Иллюстрации к изобретению RU 2 618 839 C2

Реферат патента 2017 года СПОСОБ СЕЛЕКТИВНОГО ИЗВЛЕЧЕНИЯ ДОННАНОВСКИМ ДИАЛИЗОМ ИОНОВ ЭЛЕКТРОЛИТА ИЗ РАСТВОРА С ФЕНИЛАЛАНИНОМ

Изобретение относится к способу очистки аминокислот. Описан способ деминерализации нейтрализационным диализом смешанного раствора аминокислоты и соли, включающий подачу смеси раствора фенилаланина и хлорида натрия в среднюю секцию трехсекционного диализатора, ограниченную мембранами разной природы фунциональных групп с геометрически неоднородной профилированной поверхностью, подачу в режиме противотока через смежную с катионообменной мембраной секцию раствора фенилаланина, а через смежную с анионообменной мембраной секцию - раствора хлорида натрия. Технический результат заключается в способе селективного извлечения ионов электролита из смешанного раствора с фенилаланином стационарным нейтрализационным диализом с профилированными ионообменными мембранами разной природы фунциональных групп. 3 ил.

Формула изобретения RU 2 618 839 C2

Способ деминерализации нейтрализационным диализом смешанного раствора аминокислоты и соли, включающий подачу смеси раствора фенилаланина и хлорида натрия в среднюю секцию трехсекционного диализатора, ограниченную мембранами разной природы функциональных групп с геометрически неоднородной профилированной поверхностью, подачу в режиме противотока через смежную с катионообменной мембраной секцию раствора фенилаланина, а через смежную с анионообменной мембраной секцию - раствора хлорида натрия.

Документы, цитированные в отчете о поиске Патент 2017 года RU2618839C2

СПОСОБ РАЗДЕЛЕНИЯ ФЕНИЛАЛАНИНА И ХЛОРИДА НАТРИЯ СТАЦИОНАРНЫМ ДИАЛИЗОМ 2010
  • Васильева Вера Ивановна
  • Заболоцкий Виктор Иванович
  • Шапошник Владимир Алексеевич
  • Селеменев Владимир Федорович
  • Воробьева Елена Алексеевна
  • Жильцова Анна Владимировна
RU2457894C1
МЕМБРАННЫЙ МОДУЛЬ 1992
  • Тищенко Галина Алексеевна[Ru]
  • Блега Мирослав[Cs]
  • Шатаева Лариса Константиновна[Ru]
RU2060802C1
US 4769152 A1, 06.09.1988.

RU 2 618 839 C2

Авторы

Васильева Вера Ивановна

Голева Елена Алексеевна

Заболоцкий Виктор Иванович

Селеменев Владимир Федорович

Даты

2017-05-11Публикация

2015-09-07Подача